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Chapter 1

Introduction

1.1. Motivation

While the original idea of optical matched spatial filters was introduced by
Va.nderLugtl more than twenty five years ago, they have not become practicable for the

three main reasons given below.

e The filters required for matched spatial filtering are complex valueit and thus
cannot be easily accommodated ¢a currently available Spatial Light
Modulators (SLMs).

o The matched spatial filters (MSFs) are overly sensitive to small changes in the
reference image and thus their performance deteriorates significantly in the
presence of image distortions.

e The light throughput efficiency of MSFs is low because the filter frequency
response is less than one for many {requencies.

Several ideas have been proposed to alleviate the above problems. Horner and
Gianino® suggested the use of Phase-only Filters (POFs) to improve the light efficiency of
correlation filters. Similarly, use of Binary POFs (BF’OFs)s’4 is proposed for easy
implementation on real-time SLMs such as the Magneto Optic SLM (MOSLM). While the
original ideas of POFs and BPOFs have been tested using computer simulations and
optical experiments, not much attention has been paid to deriving optimal POFs and
optimal BPOFs. This research report summarizes the results obtained for designing

optimal POFs and BPOFs under the contract numbered F 19628-88-K-0018 and entitled

"optimal phase-only filters".




1.2. Research Contributions

Following important results were established during this research contract.

details regarding these results are available in chapters 2 and 3.

o We provided a theoretical proof that the conventional POF introduced by
Horner and Gianino is indeed the optimal (from the viewpoint of maximizing
the Signal-to-Noise Ratio (SNR)) among all unit-modulus filters.

e We proved that the SNR obtained from the conventional POF can be further
improved by selecting the support function of the POF appropriately. The
POFs with support functions chosen to maximize the output SNR are termed
the Optimal POFs (OPOFs).

e We derived an elficient algorithm for selccting the support function of the
OPOF. We have developed the appropriate software and made several
refinements to the basic algorithm to improve its efficiency.

e We carried out extensive simulations to illustrate the SNR im rovements
obtained by using OPOFs. Using 32 X 32 images of a tank, we observe an
SNR improvement of about 3.5 dB.

e We carried out extensive simulations to quanti{y the distortion sensitivity of

the OPOF's. It is observed that OPOFs are less sensitive to distortions than the
conventional POFs. Similarly, POFs are more light efficient that OPOFs.

e We developed a method for designing the optimal support function when the
output correlation detector is noisy. It is shown that for low-noise detectors,
the support function will be the same as that of the OPOFs. However, when
the detectors are noisy, the filter support function should be opened up as wide
as possible.

e We showed that the results proved by Farn and Goodman® for designing
optimal binary POFs are incomplete and that they missed a subtle point. We
completed this proof and showed that the selection of an appropriate support
function can improve the SNR of the BPOF. These are termed Optimal BPOF
(OBPOFs).

o We developed a very efficient method for deriving the support function for the
OBPOF. This method searches over all pussible Threshold Line Angles (TLAs)
to design the optimal support function.

e We have carried out extensive simulations to characterize the OBPOF and
have observed about 5 dB improvement in SNR compared to the BPOF.

More




1.3. Organization

The remainder of this report is organized as follows. In chapter 2, we provide the
proofs and results concerning Phase-only Filters. After a brief introduction is Sect. 2.1, we
provide the necessary background in Sect. 2.2. The concept of OPOF is introduced in Sect.
2.3 along with a few illustrative examples. Then we introduce an efficient algorithm for
designing OPOF's in Sect. 2.4. In Sect. 2.5, we present an even faster algorithm that
designs a slightly sub-optimal POF. The distortion sensitivity of the OPOFs is then
evaluated numerically in Sect. 2.6. The OPOFs are extended to the 2-class problem in
Sect. 2.7 and the effects of detector limitations are included in Sect. 2.8.

A similar format is used for the BPOF discussion in Chapter 3. An cfficient
algorithm for designing OBPOFs is presented in Sect. 3.2 and some numerical results
obtained using it are presented in Sect. 3.3. A slightly sub-optimal, but very efficient
algorithm is presented in Sect. 3.4. Then, in Sect. 3.5, we unify the OPOF and OBPOF
algorithms. Sect. 3.6 addresses the issue of bifurcation that seems to appear in BPOFs.

Finally, the distortion sensitivity of OBPOFs is explored in Sect. 3.7.




Chapter 2

Phase-only Filters

2.1. Introduction

Since the introduction of the frequency plane correlator by Vander Lugtl, matched
spatial filters (MSFs) have been very popular in optical pattern recognition. The MSFs
yield the highest possible Signal-to-Noise Ratio (SNR) when detecting a known
signal/image corrupted by additive white noise. The use of the MSF's in optical processors
requires that we have the ability to represent both the magnitude and the phase of the
complex-valued filter plane function. However, several spatial light modulators
(SLMS)G’ 7,8 of current interest can function in a phase-only mode and thus the filters
sed must be phase-only.

Recently, Horner and Gianino>' 9 introduced the notion of using the phase-only
version of the conventional MSF by setting the filter magnitude to 1 for all frequencies.
Such a filter will be referred to as the Phase-Only Filter (POF). Hence, the POF yields
coniinuous variations in its phase function only. Even though this is not directly
compatible with SLMs such as the MOSLMS, operating in a discrete phase-only mode, the
POF was still considered as a step towards achieving matched filtering using SLMs, and
has triggered considerable amount of research in the area of phase-only filtering. In fact,
many researchers have proposed to bridge this gap by a simple binarization of the POF to
obtain Binary Phase-Only Filters (BPOFs)lO’ 3 11 yey, despite this increased interest in
the use of POFs, we are not aware of any research that theoretically investigates the

optimality of the conventional POF2. In this chapter we fill this void and establish




methods of optimally designing POFs. We provide a formal proof that, with proper
selection of the filter support (i.e., the region consisting ol all frequencies at which the
filter’s magnitude is non-zero), the conventional POF does indeed yield the highest SNR.
The resulting filter (with the corresponding support) will be termed the Optimal Phase-
Only Filter (OPOF). We also illustrate and quantify the improvement in SNR (rcsulting
from the use of OPOFs) with the help of both analytical examples as well as realistic
image examples. We analyze the various characteristics of the optimal support for OPOFs,
and provide an efficient algorithm for its design in addition to a very efficient sub-optimal
technique. The sensitivity of POFs and OPOFs to input distortion is also examined, as
well as the effect of detector noise on the design of OPOF's. We must emphasize that this
chapter is intended for the detection of known signals/images in noise whereas some of the
12,13, 14, 15

other approaches presented in the literature are aimed at distortion-invariant

pattern recognition with phase-only filters.

The remainder of this chapter is organized as follows. In Section 2, we present some
background material related to the detection problem and matched filtering. In section 3,
we provide the derivation of the OPOF along with some analytical examples that illustrate
the resulting improvement in SNR. In scction 4, we develop an efficient algorithm for
numerically solving for the support of OPOF's in the presence of white noise. We illustrate
the algorithm using two realistic images (tank and pliers). Section 5 is used to present a
very efficient sub-optimal algorithm for the design of OPOFs with white noise. While this
algorithm causes a very small loss in SNR (of the order of 10 dB), the speed up factor it
leads to is substantial (about two orders of magnitude). In Section 6, we investigate the
distortion sensitivity of OPOFs and POFs to input distortion with the help of computer
simulations. Section 7 deals with a two-class detection problem. Section 8 is devoted to
analyzing the effect of the detector noise on the design of OPOFs. Finally, Section 9

summarizes our results.




2.2. Background

2.2.1. Matched Filtering

We start with the well-known derivation of the optimality of the matched filter to
set up some of the notation needed for the following sections. In a detection problem, the

observed signal r(z) is given by
r(z) = s(z) + n(x) , (2.1)

where s(z) is the known reference signal and n(x) represents additive stationary noise with
zero mean and power spectral density Pn(f). The presence of the reference signal is
detected by letting r{x) be the input to a linear, time-invariant system with impulse
response N{z) (or equivalently with transfer function [(f)) and sampling the
corresponding output (without loss of generality) at x = 0. If this sampled output value
exceeds a pre-determined threshold, then the decision that “Signal s(x) is present in r{(x)"
is made and if the sampled output value falls below that threshold, it is decided that
“Signal s(z) is not present in 1{x)".

To determine the H(f) that yields the best performance, the following Signal-to-

Noise Ratio (SNR) measure is usually maximized.

| [ sty Huas P
SNR = , (2.2)

[ e

where S(f) is the Fourier Transform (FT) of s(x) and the limits of integration are from
—o00 to +o0o. The numerator of Eq. (2.2) denotes the square of the modulus of the average
output value when s(z) is present whereas the denominator is the variance in the sampled
output. Thus, better detection performance is expected with filters yielding higher SNR

values. This SNR is the measure used in the derivation of the classical matched filt;er16




and is different from another useful measure known as the Peak-to-Sidelobe Ratio (PSR).
The PSR is defined as the ratio of the square of the output peak value (presumably located
at = 0) to the variance of the output function away from this peak. Thus, SNR is a
measure of how well a filter performs in the presence of additive noise whereas the PSR is
a measure of how sharp the output peak from that filter is. Unless otherwise stated, we
consider the SNR as our performance criterion as is the practice in classical matched filter
derivation.

To find the filter H(f) yielding the highest SNR, we apply Cauchy-Schwartz

inequality to the numerator of Eq. (2.2) to obtain the following.

| [IVP(HHDT ]df|

VP ()

n

| P (R

o S(f 2
[ E s e | S an

[ BAn DR

ROk 5
=/'—13:(—B—df = SNR MSF (‘“3)

with equality occurring if and only if

where a is an arbitrary complex constant that does not affect the resulting SNR.




For white noise, P (f) is a constant and H(f) = S$*(f) or h(x) = s( — ) and the
filter output turns out to be the cross-correlation of the received signal 1{z) with the
reference signal s(z). For colored noise, cross-correlation is not equivzlent to optimal
filtering. It is worth emphasizing that no other filter (phase-only filter or any other) can
yield a higher SNR than SNRMSF‘ The optimum filter of [Eq. (2.4) can also be written

(assuming o = 1) as

H(f) = e’ , (2.5)

where [S(f)| is the magnitude of S(f) and @ (f) its phase function. Thus the optimzl

filter is in general complez.

2.2.2. Conventional POF

The concept of phase-only filters (POFs) in optical correlators was introduced in
1984 by Horner and Gianino®. In order to improve the light throughput of the optical
correlatori, they suggested that the magnitude in Eq. (2.5) be set to 1 at all frequencies.

The resulting phase-only filter (POF) is then

—,(J)
Hpop = e . (2.6)

The use of POF was somewhat justified based on the observation!? that the phase of the

Fourier transform of an image seemed to retain more information than its magnitude.

This POF has been tested with the help of some images and was seen 18 o have the

following properties:

e POF yields sharper correlation peaks than the classical matched filter.

'Even though improving the light throughput has been one of the motivations behind the
introduction of POFs, taking the complex matched filter one step closer to its real-time
implementation using the recently developed SLMs is probably an implicitly stronger motivation.




e POF has higher light efficiency (in fact, 100%).
o POF results in higher pecak-to-sidelobe ratios than the classical matched filter.
While the use of POFs for optical pattern recognition has been justified with the
help of several examples, the approaches presented in the literature so far (except for a
fewls) are more or less "after-thoughts®, i.e., these POFs are obtained by determiuing an
optimal filter and then setting its magnitude to a constant arbitrarily. Suiictly speaking,
there is no a prior: reason why the phase of the Optimal POF should be set equal to the
phase of the matched filter. Furthermore, the bandwidth of the POF is usually allowed to
be arbitrarily large (usually only limited by the optical system aperture). Even though this
yields sharp correlation peaks, it also allows all the noise present in the input to pass
through unattenuated. Indeed, the POF can be viewed as the cascade of the matched filter

0

with a second filter whose frequency response equals =—=—. Since |S(f)| is usually small

(S|
for high frequencies, the second filter actually turns out to be a high pass filter. This
implicit high-pass filtering effect!? scems to be the main reason for one of the problems
associated with POFs, namely sensitivity to input noise. Hence, there is a deflinite need for
proper support selection when dealing with POFs. In the next section, we will describe a
different approach where an optimal phase-only [lilter will be designed starting with the

constraint that it is a phase-only filter.

2.3. Optimal Phase-only Filters

2.3.1. Derivation of OPOF

We now derive the optimal phase-only filter (OPOF) that maximizes the SNR in Eq.
(2.2). Towards this end, let us assume that S(f) is zero for f not in region §. We start

with the constraint that the desired filter H(f) is of the following form.

H(f) = 1,(f) ) (2.7)

10




where &(f) is the phase of the POF (not necessarily equal to — @ (f)) and where 1,(/f)

denotes the indicator function of the region R (support) delined as

{1 if feR

0 otherwise

I,Q(f) =

Using Eq. (2.7), the SNR in Eq. (2.2) can be rewritten as

| /]a S(f) U ay 2

SNRpgp =
/B P.(f) df

We can find an upper bound to the SNR in Eq. (2.9) as below:

I/ 1S() A2+ e g (2
R

/}e P (/)df

[ /}2 S| | AP | g )2

SNR pop =

/,e P.(/)df

[ /R | S df TR

B [}2 P (f)df

(2.10)

Thus for a given support R, the maximum SNR obtainable from any phase-only filter is

given by

11




! /}e EGTE
SNR opop = . (2.11)

P (f)df
R

From the first line in Eq. (2.10), we see that the phasc-only filter that achieves the optimal

SNR in Eq. (2.11) has its phase given by
)= - (/) + 0, (2.12)

where 0 is any constant. We will assumc from now on (without any loss of generality) that

60 = 0. Thus, for a given R, the conventional phase-only filter e 2 does indeed give
the highest possible SNR.

Now the SNR in Eq. (2.11) can be further optimized by properly selecting the
support R. Unfortunately, Finding the optimal support Rapt is in general a fairly difficult
task. Nevertheless, some characterizations of Eopt can be provided. This will be the object

of focus of the next section.

2.3.2. Optimal Support Characterization
First, for OPOF, we must have

cs, (2.13)

Ropt —

otherwise, we can easily see from [q. (2.2) that the denominator will increase with no
increase in the numerator. Before we present two other results, we list some useful
definitions.

e A region R? is said to be symmetric iff
v/SeR, —feR®. (2.14)

o A region R? is said to be anti-symmetric iff

12




r———_—_———

VSfeRrR*, —f¢gR®. (2.15)
o We define the mirror image of an anti-symmetric region R® (denoted R%™) by
R™ = {f: —f€ R} . (2.16)

Note that R%™ is itsell anti-symmetric.

e Any region R can be partitioned as
R = R°uU R%, (2.17)
where, R® and R? (disjoint) are given by
RE={feR: —[€R}, (2.18)

and

R* = R\R®. (2.19)

In the above, the symbol "\" denotes the set difference operation.

Proposition 1: Ropt is even symmetric {or real reference images.

Proof: Recall that we want to find R that maximizes the SNR in Eq.
(2.11). Then, the optimal support Ropl can be decomposed as

s a
Ropt = Ropt U Ropt ) (2.20)

Let us now assume that

ijt = 9. (2.21)
There are two cases:
1. R;pt = @. In this case, it is not difficult to see that by using
R = Rzpt U RZ})—t we double the SNR, t.e., .

13




SNR(R') = 2 SNR(R

Opt)' Absurd . (2.22)

In the above, we made use of the fact that
1S(=/ = 1S/ (2.23)
which is a direct consequence of the assumption that s(z) is real.

2, RZpt £ . The objective now is to show that by using

am
R =R, URS, (2.24)

we get higher SNR, resulting in an absurd situation. Let

o = /s 1S < (2.25)
opt

= /. 1stiar, (2:20)
opt

n= [, P(Ndf, (2.27)
/Ropt

e= [, PO (2.28)
opt

Using Egs. (2.25)-(2.28), Eq. (2.24), and Eq. (2.23) in Eq. (2.11), we get
S'NR(}Zopt) ~ SNR(R')

(a+ B)° (a + 28)?

T op+¢€ n+ 26

e _ g _ongy — 94
_oE-Fn—208 — 26 (n+¢) <o, (2.20)

(n + &)(n +2¢)

Absurd .

The above strict inequality comes from the fact that

14




opt
o (o + B)°
= —
n - n+€
= a®6—fn—2ahy < O, (2.30)
and the fact that!
Bn+¢€ > 0. (2.31)

Hence, in conclusion, our assumption in Eq. (2.21) cannot be true and Ropt

must be symmetric o

Proposition 2: For white noise,

R, ={/:150)1 > <}, (2.32)

where, €_ is a positive constant (to be determined) that depends on [S(f)] and

the whice noise level.

Proof: Assuming white noise, the above result follows directly from the
observation that to maximize the SNR, we want the frequencies with the largest
magnitudes to be included in the passband [irst. This is exactly achieved by
comparing |S(f)| to some threshold and rejecting all those frequencies with
magnitudes below the threshold™. However, there is a subtle issue that needs to
be addressed. Let us denote by Sc the set

"Note that 8 is non-zero from the assumption given in Eq. (2.21).

Wpor example, for all signal spectra for which the OPOF turns out to be a low pass filter
(examples of such spectra will follow in next sections) it can easily be seen that the optimal
passband is given by the set of all those frequencies at which the magnitude of S(/) is greater than
co given by

e, = 1SW,)l . (2.33)

where Wh is the optimal cut-off frequency of the OPOF. Unfortunately, no other information can
be given about €, and in general, it depends on S(/) and the white noise level. Actually, Eq. (2.33)
points out that finding the optimal threshold % in general involves the same level of difficulty as

finding the optimal cut-off frequency (namely solving a transcendental equation, as will be seen
shortly).

15




then the Lebesgue measure of Sc (;t(S() ) as a function of € shows a discontinuity

of the first kind (i.e.,, a "jump") whenever |S(f)| is constant over a region of
non-zero measure. This is illustrated by the example in Figs. 2-1 and 2-2. This
-could cause problems in the sense that if one of the optimal cut-off frequencies
(there could be more than one for the casc where the OPOF is a multi pass
filter) lies in the interior of a region (with non-zero measure) over which |S(f)|
is constant, then the optimal support cannot take the form given in Eq. (2.32).
Another way of stating this difficulty is that the sets in Eq. (2.32) cannot
“resolve" those non-zero measure regions over which |S(f)| is constant.

[sco
4

(72

M

\j

Figure 2-1: Hypothetical signal spectrum.

u(s,)

Figure 2-2: Lebesgue measure of §_ for above spectrum.

It turns out that the above case is forbidden, i.e., no optimal cut-off
frequency can be in the interior of such a region. This {act can be easily proved.

16
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It can be checked that by enlarging the cut-off frequency by an infinitesimal
increment, we get higher SNR. A similar proof will be given in a forthcoming
section e

While the above results somewhat characterize R they remain of academic

opt’
importance only, since they do not explicitly lead to the optimal region. Later on, we will

introduce numerical techniques based on this characterization to solve this problem.

2.3.3. Analytical Examples

To analytically investigate the effect of proper support selection on the performance
of the system, we need to make some simplifying assumptions. First, we will assume that
most of the energy of the reference signal lies in the low frequency region of the spectrum.
Second, we will assume the power spectral density of the noisc to be much wider than the
spectrum of the reference. With these assumptions, the OPOF turns out to be a low pass

filter (i.e., the optimal region Ropt is a low frequency region). Hence the OPOF is given by

H(f) = (2.35)

,

{e‘f‘”a(f) for | /] £ W,

0 otherwise

where ”/h 1s the cut-off frequency of the OPOF. Then, the SNR expression given in Eq.

(2.11) can be written explicitly as a function of W, as

(2.36)

Where we used the fact that for real signals both |S(f)| and P, (/) have even symmetry.

17




To find the best choice for W, we sct the derivative of SNRypqp in Eq. (2.36) with

respect to PVh to zero. Thus VVh is the solution to the following equation.
Wh H/h
2 [ R0 an sy = ([ IS dt £,00,) (237)

To solve Eq. (2.37), let us define the following new [unctions.

PIW,) = — i () df (2.38)
" h Pn(‘lvh) 0 " ’
and
SIW,) = ——r / W"|S( nds . (2.39)

Then the optimum l’Vh can be obtained as the solution to the following equation.
SW,) =PIW,) . (2.40)

From a geometrical point of view, this can be done finding the intersection of the curves
S '(W,) and P /(W,). In case this equation cannot be solved explicitly (i.e., the functions
S(W,) and P, /(W,) do not intersect), we must graph the SNR oo in Eq. (2.36) as a
function of Wh and choose the ”/h yiclding the maximum SNR OPOF We now present a
few examples to illustrate the necessity of proper bandwidth selection. Let the noise be

white noise with a power spectral density of NO'
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2.3.3.1. Triangular Signal Spectrum

Here we assume that the magnitude of the signal FT is as below.

/]
(l——=)for |f] < W
s = {7, ‘. 2.41)
0 otherwise
Substituting Eq. (2.41) in Eq. (2.36), we see that SNR OPOF (Wh) is given by
?‘Wh ‘vh 2
SNR 5por (‘Vh) = -'1'\—7;' (1 - :;IT) . (2.42)
It is easy to verify that the SNROPOF in Eq. (2.42) can be maximized by choosing
2
H/h = 5 |'Vs (2.43)
The resulting maximum SNR from an optimal phasec-only filter is given by
16 s o
SNR pop = 57 N, (2.44)

If we use the full signal bandwidth "Vs for the filter (as is done for the conventional POF),

the resulting SNR is given by

2w W, W,
SNR pop = N (1 QW) =2N0 . (2.45)
8

It is obvious from Eq. (2.44) and Eq. (2.45) that the conventional POF yields smaller SNR
values than our optimal POF. Of course, both these SNRs are lower than that obtained

from the classical matched filter.
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SNR =~—/‘“1-~——d = — 2.46
S A -394 =35 (2.46)
s 0
This example clearly illustrates that
SNR pop < SNR gpor < SNR MSF - (2.47)

More exactly, the conventional POF yields a SNR 1.25 dB lower than that of the classical
MF whereas our OPOT yields a SNR only 0.51 dB lower than that of the classical matched

filter.

2.3.3.2. Cosinusoidal Signal Spectrum

In this example, the magnitude of the signal FT is given by

0 otherwise

(2.48)

Substituting Eq. (2.48) in Eq. (2.40) and simplifying, we obtain the following

transcendental equation in H/h.

u/h 1 T ”/h 5.40
W = —tan [2 v . (2.49)

While this transcendental cquation has many possible solutions, we require that
114
h

0 < W < 1. By numerically solving Eq. (2.49), we determined that the solution is

8

approximately given by

W, = 0742 W, . (2.50)
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Substituting Eq. (2.50) in Eq. (2.36), we found that SNRypqp equals 0.9226 (—N—:)
"Vs

The SNR can be shown to be (—-). The conventional POF uses the full bandwidth
MSF NO

) W
8
W, = W_ and the resulting SNR is (=) (-jvs-) Thus, the conventional POF has a SNR
n* 0

0.912 dB below that of the classical matched filter whereas the OPOF yields a SNR only

0.35 dB below that of the classical matched filter.

2.3.3.3. Sinc Signal Spectrum
The previous two examples involved only relatively small improvements in the SNRs.

In this subsection, we show a more dramatic example. The magnitude of the signal FT is

given by.lv

|SU) 1 = | Sine (JT)[ (2.51)

where T'is a known constant. Such a magnitude Fourier transform occurs when the signal
is a rectangle function that is zero outside —7/2 < z < T/2. The SNRy o for this

signal can be easily shown to be

1 oo, 1
SNR y4qF =1—V;/“°° Sinc =(S7T) df———m . (2.52)

For the conventional POF, the | H(f) | is I for all frequencies because {S(f) | has infinite
bandwidth (even though, in practice, any filter will be band limited) and from Eq. (9), we

obtain

iv sin (7 z)
Here, we define Sinc(z) as —
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([ 1sinem | sy
SNR - —0. (2.53)

POF o
/ N, df
—00

The W, defining the OPOF can be obtained by evaluating SNRypop in Eq. (2.36)

as a function of I/Vh and finding the VV/‘ that maximizes it. This evaluation was done
numerically and after some approximations, it was found that H/h = 0.6855/T yields the

highest output SNR. For this choice of l'Vl, the resulting SNROPOF Is seen to be

W,
2] /0 " | sine (/TS 2

0.8245
SNR opor = W = NT (2.54)
1

NO/O df

In the above SNR evaluation as well as in the solution of Wh’ we made use of the

following series expansion20

(_1)i+1(7r T”/h)Qi—l

1
ﬁt; (2i—1) (2i—1)!

W

/0 Sine (T f) df = (2.55)
Comparing the SNRs in Eqgs. (2.52) and (2.54), we see that the OPOF yields an SNR that
is only 0.838 dB below that of the matched filter. On the other hand, the conventional
POF is overwhelmed by the white noise because of its all-pass nature and yields a zero
SNR.

We realize that it is unwise to allow any POF to have an infinite bandwidth.
However, this example clearly brings out two points. Firstly, it shows that proper
selection of POF bandwidth is essential for obtaining a reasonable SNR. Secondly, it

shows that one is trading off SNR against sharpness of correlation peaks. For example,
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when the conventional POF has infinite bandwidth, it will yield the sharpest correlation

peaks, but with zero SNRs.

2.3.4. Comment on Zero-mean Noise Assumption

In our formulatior: of the detection problem, we have made the assumption that the
noise corrupting the input has zero mean. [Even though this assumption may be valid in a
communication theory context, it may not be so in an optical pattern recognition context,
because the imaging devices used to display the input are usually intensity sensitive. As a
result, the additive noise n(x) we deal with in an optical correlator has a positive mean
m . If m,_ is known a priori, then its contribution to the filter output (at the origin) is a

known deterministic value given by

Y (0) = m H(0), (2.56)

n

where, H(0) is the transfer funct'on of the filter evaluated at the origin. Hence, if we
subtract this value from the total output at the origin, we would cancel the effect of the
non-zero mean of the noise. Thus, if we redefine the SNR as

[ £{ [y(0) — m H(0)] / signal present } 2

SNR = v (o0} ’ -

o
wn
~)
~—

we get exactly the expression in Eq. (2.2), and we can proceed as before. In Eq. (2.57), y(0)
denotes the output value at the origin, E{a/c} denotes the expected value of a
conditioned on ¢, and var{a} denotes the variance of a.

If, however, m, Is not known a priori, we cannot cancel its effect by a simple
subtraction. Instead, let us rewrite n(x) as the sum of two components: A realization from

a zero mean random process no(a:) and the mean value m_, ie.,
n(z) = n(z) + m . (2.58)

Similarly, we rewrite s(x) as a zero-mean signal added to a positive DC bias, i.e.,
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s(x) = s (z) + m, . (2.59)
We can see from Eq. (2.58) that

P =P () ¥ m> &) , (2.60)

where, &(f) is a delta function. Hence, the SNR expression is given by

SNR = | E{y(0)/ signal present }!2
var{y(0)}

| / TS (NH() A + +m, +m )H(O)]?
- —= . (2.61)

[ B DiHDP 4 + wlHE)

If we assume
H() =0, (2.62)

then the SNR expression in Eq. (2.61) reduces to Eq. (2.2) with S (f) and P, (/) replacing
o

S(f) and P"(f), respectively. Eq. (2.62) expresses the well known practice of introducing a

DC block at the frequency plane of an optical correlator. Notice that the filter that

optimizes Eq. (2.61) subject to the condition given in Eq. (2.62), is given by

)
P, ()

n
]

(2.63)

Hopt(f) =a

(the condition that H(0) =0 is satislied from the fact that S (0) = 0). Once again, we
observe from Eq. (2.63) that for the case of white noise, optimal (among all filters with
zero DC value) filtering is equivalent to a "slightly modified" correlation operation. Hence,
the fact that the additive white noise has a non-zero mean does not make the optical
correlator lose its optimality, since we just argued that a correlator with a DC block is the

best among all filters with DC blocks.
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In conclusion, the non-zero mean of the input noise can, v ithout loss of generality, be
ignored by a small modification of the output value. This modification could be performed
by a direct subtraction from the output of the contribution due to the noise mean (if it is
known a priori), or by introducing a DC block in the frequency plane of the correlator.
This second approach is robust to uncertainties in the first order characteristics of the

noise.

2.4. Efficient Algorithm for OPOFs

2.4.1. Algorithm

In this section, we provide an efficient numerical procedure for finding the support of
the OPOF when the noise is white. Then, the denominator in Eq. (2.11) depends only on
the area of the support and not on which exact spatial frequencies are included in this
support. Thus, for a given size of the support, we want to include those spatial frequencies
that maximize the numerator of Eq. (2.11). To do this on a digital computer, we use the
discrete notation. To accomplish this, we reorder the samples of the signal Fourier

transform as below.
S| 21521 =2 --- 218)]| , (2.64)

where d is the number of samples in the signal discrete Fourier transform (DFT) S(k). Let
K denote the number of pixels in the support. By choosing the K pixels corresponding to
the first I signal DFT values in Eq. (2.64), we will maximize the resulting SNR for that

choice of K. The corresponding SNR is given by

SNR (K) =NE (Z : (2.65)

where Af is the integration step size, and can be ignored in the optimization procedure.

We numerically evaluate SNR (I) for all possible choices of K and select the one that
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maximizes it. Notice that without the ordering scheme, Tor cach value of V' we must 1y

all possible supports consisting of K pixels. This is impossible even for small A values.

2.4.2. Simulation Results

In this section, we investigate the comparative performance of the classical matched
filter (MSF), the conventional phase-only filter (POF) and the optimal phase-only filter
(OPOF) with the help of realistic 2-D images.

2.4.2.1. Tank Image

In this simulation example, we used the 32X 32 tank image shown in Figure 2-3. All

Figure 2-3: Tank image used.

three types of correlations (the MSF, the POF and the OPOF) were done with the help of
FFTs of size 64X64. The original 32X32 images (both the reference images and the
observed images) were converted to 64X 064 images by padding them with zeros. To
investigate the effects of various amounts of noise, we added zero-mean, Gaussian, white
noise of variance o2 to these images. Sample images obtained by adding noise realizations
of variances 1, 2, 5, 10, 50, 100, 200, 500 and 1000 are shown in Figs. 2-4(a) through
2-4(i), respectively. It was seen that the uncorrupted image in Fig. 2-3 has an average
pixel energy of 119.7; thus, a noise variance of 100 represents an input SNR of 10 log,
(119.7/100) = 0.781 dB.

The magnitude of the 2-D Fourier transform of the image in Fig. 2-3 is shown in Fig.
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Figure 2-4: Noisy tank images.
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Figure 2-5: Magnitude of the FT of tank image.
2-5. Because of the limited dynamic range of the display device, we do not see the high
dynamic range of this FT magnitude (maximum value of 4040, minimum value close to
zero) in this figure. This high dynamic range is a direct consequence of the nonzero
average value in the original image We avoided the deliberate introduction of low-
frequency stops in the filter plane (usually done in optical matched filtering) since it
interferes with the OPOF optimality by introducing an ad-hoc intermediate step. The

phase of the resulting POF is shown in Fig. 2-6 where darker regions represent phases close

Figure 2-6: Phase of POF for tank image.
to -m and brighter regions represent phases close to +7. The OPOF has the same phase
characteristic as the one shown in Fig. 2-6 except that its magnitude is nonzero only over a

smaller frequency region. We numerically determined the support of this OPOF to
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maximize the output SNR. The resulting support is shown in Fig 2-7. 1t s not surprising
to see that the OPOI" allows only those regions where the image F'T magnitude is very

large.

Figure 2-7: Optimal support for tank image.

The SNRs obtained with the three different filters were evaluated by repcating the
above cross-correlation experiments with 100 different noise realizations. The average
value of the output correlation at the origii. as well as its variance were used in estimating
the SNR. The output SNR as a function of the input SNR (over the range of -10 dB to
+20 dB) is shown in Fig. 2-8 for the three different filters. The SNR relation given in LEq.
(2.47) is illustrated very clearly in Fig. 2-8. We see from this figure that the matched filter
yields a processing gain (output SNR in dB minus input SNR in dB) of about 30 dB, which
is the expected SNR improvement for an image with about 1024 pixels. The conventional
POF yields a processing gain (PG) of 25 dB whereas the optimal POF yields a PG of about
28.5 dB. Thus, use of the OPOF improves the SNR by about 3.5 dB compared to that
obtained by the conventional POF. This improvement is quite significant.

It is easily seen that the OPOF has a smaller bandwidth compared to the
conventional POF. Thus, we can expect that the correlation peaks obtained from the
OPOF to be broader. To illustrate this, we include sample cross-correlations obtained
from the three methods in Figs. 2-9 and 2-10. Figs. 2-9(3.),‘ 2-9(b), and 2-9(c) show the

three output correlations when the input noise is of variance 100 (input SNR is 0.78 dB).
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Figure 2-8: Output SNR (vs) input SNR for tank image.
Similarly, Figs. 2-10(a), 2-10(b), and 2-10(c) show the output correlations when the input
noise is of variance 1000 (input SNR is -9.22 dB). We see from Fig. 2-9 that the
conventional POF yields the sharpest correlation peak whereas the OPOF yields broad
correlation peaks. The sidelobe structure is seen to be the most oscillatory for the
conventional POF and less oscillatory for both the OPOF and the classical matched filter.
This behavior is much more pronounced in Fig. 2-10 where the input noise has a variance

ten times as high as the one in Fig. 2-9.

2.4.2.2. Pliers Image

In this second simulation example, we used the 3232 pliers image shown in Fig.
2-11. This image had average pixel energy of 120.68. We carried out the same simulation
steps described above (i.e., same FFT size, noise variances, number of realizations...,etc.).
Fig. 2-12 shows the magnitude of the Fourier transform of the image in Fig. 2-11. As can
be observed, the vertically elongated pliers image yields a horizontally elongated Fourier

transform. Tlie negative of the phase of the Fourier transform is shown in Fig. 2-13 The
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Figure 2-9: Output correlation of tank image with MSF, POF, and OPOF

when input noise is of variance 100.
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Figure 2-10: Output correlation of tank image with MSF, POF, and OPOF

when input noise is of variance 1000.
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Figure 2-11: Pliers image used.

Figure 2-12: Magnitude of the FT of pliers image.

Figure 2-13: Phase of POF for pliers image.
numerically found optimal support for the pliers image is shown in Fig. 2-14. It consists of

311 pixels that are “ON". It is intersting to observe that the support for this case is a
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multi-pass region. This s contrary to the mtuitive wden of using o low puss Didrer for por s
reduction in images. Nevertheless, it i1s scen that the support is still emphasizing chose
regions in frequency (including DC) where most of the energy in the image lies. This is o
direct-conscquence of the fact that we are optimizing the signal-to-noise ratio, since the
SNR increases with the amount of signal energy reaching the output. However, as we will
see shortly, in a classification problem the frequencies that carry most of the energy in the
filter may not coincide with the frequencies that carry most of the discriminatory

tn formation. Hence, we expect in such cases that the optimal support will exhibit an even

more "scattered® behavior.

Figure 2-14: Optimal support for pliers image.

We computed estimates of output SNRs with all three filters (MSF, POF, and
OPOF) as we did in the previous simulation example. These output SNRs are plotted as a
function of input SNRs in Fig. 2-15. This figure shows the same hierarchy observed carlier
in Fig. 2-8. The Matched filter yielded the highest SNR with a processing gain (PG) of
about 30.5 db. Next, comes the OPOF with a PG 2 db below that of the matched filter.
Finally, the POF comes last with a PG 1.5 db below that of the OPOF. Hence, optimizing
the pass band resulted in improving the output SNR by about 1.5 dB. Even though this is
less than the 3.5 dB improvement obtained ea:lier with the tank image, it is still
considered significant.

The image examples used in the above simulations clearly illustrate the superiority of

the OPOF over the conventional POF when the output SNR is the criterion of interest.
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Figure 2-15: Output SNR (vs) input SNR for pliers image.

2.4.3. Window Approximation to Support

Realistic images have most of their energy lying in the low frequency region of the
spectrum. This fact often allows filter designers to use low frequency (square) windows to
reject the corruptive high frequency components. Hence, our support optimization might be
initially taken to fall in the realm of the well known practice of using a low pass window
to cut-off high frequency noise. However, the above simulation examples clearly illustrate
that there is a definite structure in the solved for supports. This structure could not be
predicted ahead of time, and leads to SNR values higher than those obtained using any
other window function.

Nevertheless, the square type of windows is easier to implement in an optical

correlator'™ than the rather arbitrarily shaped supports shown above. Hence, there is a

XThis is particularly true for optical correlators based on the grid structured Spatial Light
Modulators (SLMs) which will be introduced in the coming chapters.
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trade-off between the ease of [ilter implementation and the resulting SNR. It seems
therefore legitimate to ask: If one constrains the support to be square, how much SNR do
we give up?

We addressed this problem numerically using the same two images. We assumed
white noise in all cases. To find the best square window, we first start with a 3X3
window centered around the origin and numerically compute the resulting SNR using the
discrete version of the SNR expression given in Eq. (2.2). Then, we enlarge the window to
5% 5 and find the corresponding SNR. We keep enlarging the window (while ensuring that
it remains centered around the origin) and cach time we compute the corresponding SNR.
The best square window is the one that leads to the highest SNR.

We first used the tank image shown in Fig. 2-3. The best square window was found
to be of size 7 X7, hence leading to 49 pixels that are "ON*". The SNR corresponding to
this window was numerically computed and fourd to be 1.5 dB below that resulting from
the optimal support presented earlier (which had 59 pixels *"ON*"). This drop in SNR was
verified by running the same simulations presented earlier, wherein the tank image Is
corrupted by the same type of noise with the same variance increments (1, 2, 5, 10, 50,
100, 200, 500, 1000). With each variance value, the output SNR with all four available
filters, namely MSF, POF, OPOF, and POFW (denoting the "window" filter) is estimated
by averaging over 100 noise realizations. Figure 2-16 plots these output SNRs as a
function of input SNRs. It confirms that SNRPOFW is about 1.5 dB below SNROPOF
which is about 1.3 dB vLelow SNRy o At the bottom of the hierarchy, comes the POF
with an output SNR approximately 2.5 dB below that of POF .

This procedure was performed again on the pliers image. The best square window
size was found to occupy the whole array (i.e., 64 X64). Hence, POFw is identically equal
to POF in this case. Thus, imposing the square shape on the support incurred a drop of
about 1.8 dB in SNR relative to the OPOF. The simulation results were already presented

in Fig. 2-15.
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Figure 2-16: Output SNR (vs) input SNR for MSF, POF, OPOF, and POF
using tank image.

The above discussion points o that the price of using (the easier to implement)
square window can be as high as 1.8 dB loss in SNR. [t i1s up to the designer to judge if
this loss is worth the advantages acquired in practice. It is worthwhile also pointing out
that this window approximation makes sense only when most of the energy in the filter lies
at low frequencies. This however may not always be true. This is especially true for two
class problems in which the frequencies of interest shift to the high frequency range since it

is believed to contain most of the discriminatory information.

2.5. Very Effici»nt Sub-optimal Technique for OPOF Design

In this section, we develop a very efficient sub-optimal algorithm for support
optimization in OPOFs. However, before presenting the new algorithm, a subtle point has
to be addressed. The efficiency of the new algorithm will be measured with respect t the

“old" one. Hence, if the latter is not as efficient as it can be, our evaluation of the new
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algorithm will be biased. Therefore, the first thing to do is to “polish” the old algorithm

and ensure that it is as close as possible to its most efficient form.

2.5.1. Enhancing the Old Algorithm

Examination of that algorithm (Section 2.3) reveals that the most time consuming
part is the sorting procedure. We have been using the Selection Sort>! procedure, which,
like the Quick Sort, Merge Sort, Shell Sort, and Bubble Sort has a worst case number of
iterations of the order of N2, where /V is the number of entries being sorted. A brief
literature search showed that the most efficient sorting algorithm known so far is the Heap
Sort*2. This algorithm has a worst case number of iterations of the order of Nlog,_,(N).
Essentially, the numbers to be sorted are not regarded as an array, but as a binary tree.
The idea is to give this tree a specific structure (called a Heap) wherein every “father®
node is greater than or equal to its "son" nodes. 1. turns out that to place each number in
its right position, one only needs to perform a number of comparisons that is, in the worst
case, proportional to the number of "levels* {equal to logz(l\f)) in the heap. This is where
the efficiency of this algorithm comes from.

We used the heap sort in our old algorithm and noticed a substantial reduction in
the computing time. For example, to compute the optimal support for the 32X 32 image
shown earlier (Fig. 2-3) on which a 64X 64 FFT was performed, it used tu take around 293
seconds on a VAX 11/750. Using the heap sort, this number was reduced to just over 10
sec. When using a 128 X128 FFT size, computing the optimal support used to take about
11630 seconds. With the heap sort, this number was reduced to only 65 seconds. Even
though we cannot claim our old algorithm is now as efficient as it can get since other fine
enhancements can still be applied , we feel it is very close to its most efficient form.
Hence, we now think it is fair to measure the performance of the algorithm we are about

to introduce to our improved old algorithm.
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2.5.2. Analysis

Let us recall that in support optimization, our objective is to find I<0pt that

optimizes the SNR given by

K 2
[; |S(i)|]

EEEEy—— 2.66

SNR(K) =

where in Eq. (2.66) we assume the numbers |S(Z)| (¢ =1,...,d) have been sorted in
descending order. The following proposition provides some insight about the optimal

support and should help in the above optimization.

Proposition 3: If two or more pixels have equal magnitudes, either all or
none of them are included in the optimal support.

Proof: It is sufficient to prove the above result for two pixels only. The
case of three or more pixels easily follows by deduction. Assume
IS(K ) =|S(K +1)| for some K > 2 (I{ =1 is a trivial case proved
easily). There are two cases. The first, is that

SNR(K) > SNR(K,~1). (2.67)

We now propose to show that in this case SNR(IK +1) 2> SNR(K ), hence
implying to include both KO and JC +1 in the optimal support. Let

K,
B=>IS6) . (2.68)
=]

Using Eq. (2.68) in Eq. (2.66), we get
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SNR(K +1) — SNR(K,)

BHISU? g2

T e —————— e, w—

K, +1 K

= -—————Ko sy (K (87 + IS(K )I* + 2818 )) — (K, + 1)5°]

= K (K +1) (SN + 281K )) — 87 - (2.69)

Using (2.66), (2.67), and (2.68), we obtain
SNR(I\’O) — SNR(K -1) > 0

2 (B=IS(K )P
K, (K1) 2

""—‘—KO(KO_I)[(Ko—l)ﬁ‘—f\’o(ﬂ'+IS(KO)I-—MS(KO)n] > 0

= =%+ K (20S(K )| - |S(K )1?) > 0

0

= K (281S(IC,)| + |S(K)*) -8 > 0 . (2.70)

Eqgs. (2.69) and (2.70) together imply the sought after result.
Now, the second case is that

SNR(K)) < SNR(K~1) . (2.71)

In this case, it is not difficult to sce'' that

K ,6 <K, o K >IK-+1, (2.72)

opt o opt

indicating that either both pixels Ko and /{_+1 or none of the two are

included in the optimal support e

ViNote that for a “cluster* of three or more pixels having the same magnitude, Kopt cannot be

in the “interior® of this cluster by the argument given in case 1.
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The above proposition suggests an interesting idea. Suppose we quantize
|S(%)], £ =1,...,d into N levels. Then, we do not have to compute the SNR for all d
pixels. It is enough to compute the SNR for the N quantization levels only, knowing from
the above proposition that pixels with the same quantization level will either all or none be
included in the optimal support. Hence, we are ready to present a new, very efficient sub-
optimal algorithm for POF support selection. The efficiency of this new algorithm stems
from the fact that it is, in principle, independent of the number of pixels and depends
primarily on the number of quantization levels which is expected to be smaller than the
number of pixels (>4000) for practical cases. The sub-optimality of this new algorithm is
due to the approximation that all pixel magnitudes [alling in the same quantization level
are equal. This approximation can be made more accurate by increasing N (the number of

quantizations).

2.5.3. Algorithm

Below, we list the steps of our new algorithm.

e STEP 1: /* This normalizes and initializes variables*/

Normalize |S(1)], [=1,...,d.
LEVEL()=0, I=1,...,(N-1).
TAG(1)=0, I=1,...d.

COUNT=0; SUM=0; SNR=0; [=0.

e STEP 2: /*This assigns levels to pixels*/
I=I+1

J=|S(1)| * (N—-1).
IF J 50, LEVEL(J)=LEVEL(J)+1.

TAG(I)=1J
IF I<d, GO TO STEP 2.
[=N-1

e STEP 3: /* This gets the optimal level*/

I=I-1
.COUNT=COUNT+LEVEL(I)
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SUM=SUM+LEVEL(I)*]

TEMP=(SUM)?/COUNT

IF TEMP>>SNR, INDEX=I; SNR=TEMP.
IF I>1 GO TO STEP 3.

[=0.

e STEP 4: /* This gets the optimal support*/
=I+1

IF TAG(I) > INDEX, INCLUDE I IN SUPPORT.
IF 1<d, GO TO STEP 4

e STEP 5: END.

2.5.4. Numerical Results

We have implemented and tested this new algorithm. The results are impressive. For
example, using the same tank image with an FFT of size 64X 64 and using N=256 levels,
we obtained in 0.13 seconds the same support we got previously in 10.15 seconds with the
old (improved) algorithm. This is a reduction in CPU time by a factor of 78. As alrcady
mentioned, we expect this factor to increase even further as the number of pixels increase.
To test this, we increased the size of the FFT to 128 X128 and applied our new algorithm
with N=256. It took 0.5 seconds to find a support made of 235 pixels to yield a
numerically computed SNR (assuming unit variance white noise) of 76.46116 {=18.834409
dB). Using the improved old algorithm, it took 64.6 seconds to find the optimal support
consisting of 237 pixels to yield a numerically computed SNR of 76.46427 (=18.834585
dB). The new algorithm has now achieved a time reduction factor of almost 130! There is a
small price though. We have giver up about 0.00018 dB in SNR. In case this loss does not
seemn negligeable enough, one can slightly increase N to reduce the inaccuracy in the new
algorithm. For example, by increasing N from 256 to 400, we obtained the optimal support
exactly (i.e., 237 pixels) in practically the same CPU time (0.5 second).

A comment is due at this point. It seems that as the number of pixels further

increases, this reduction factor increases even further. We increased the FFT size to

42




256X256. The old algorithm took 304.33 seconds to generate the optimal support (931
pixels) to yield a numerically computed optimal SNR of 76.422375 (=18.832205 dB).
Applying the new algorithm with N=256, it took 2.88 seconds to find a support made up
of 921 pixels to yield an SNR of 76.419975 (=18.832069 dB). This results in a reduction
factor of about 106 with a loss in SNR of about 0.00014. Increasing /N to 1000 achieved an
exact solution in 2.93 seconds (a time reduction of about 104). Thus, the time reduction
factor has dropped from 130 to 104 as we quadrupled the number of pixels. We believe this
behavior is due to the overhead computations (such as assignments) that seems to "take
over" as the number of pixels increase, hence causing the time reducticon factor to exhibit a
vpeak". Notice also how the number of quantization levels necessary to achieve exact
results slowly increases with the number of pixels, while the computation time difference
increases very slowly. This may suggest an enhancement to the new algorithm by
adaptively changing N (eg. N= a slow function of d).

Before moving to the next section, a last assessement of the new algorithm is due. It
seems that this newly proposed algorithm has provided us with tremendous savings in
computer time (about two orders of magnitude) at the expense of a very small loss in SNR
(less than 22X 1074 dB). As argued above, we can even get exact results with a saving of at
least one order of magnitude in computer time (this being a rather conservative number).
What did we give up? The answer is nothing. The only other point that could be a price
Is the memory requirement of the algorithm. It turns out that both the new and old
algorithms use the same memory storage, since the d dimensional array that is used in the
old algorithm for the sorting procedure is used in the new algorithm for tagging the pixels
(i.e., to which level each pixel belongs). It is worthwhile mentioning that all the CPU times
presented above do not take into account the time to compute the FFT, get the magnitude
of the pixels and normalize them, and the input/output operations. All these computations

are common to both algorithms and -strictly speaking do not constitute part of the

algorithms themselves.

43




2.6. Distortion Sensitivity of OPOF

As mentioned earlier, one of the main problems associated with POFs is their
sensitivity to input distortion. This problem seems to be related to the implicit high
frequenéy emphasis described previously. In this section, we propose to investigate the
distortion sensitivity of POFs relative to the OPOF and Matched filter using computer
simulations. In the first run, we used a data base consisting of distorted versions of the
tank image shown in Fig. 2-3. The distortion we deal with here is 3-D rotation. All images
are pictures of the tank viewed along a "cone" with 10° degree rotation increments. The
tank is viewed with a depression angle of 70° with respect to ground. We computed
estimates of output SNRs for the first 12 images (corresponding to rotation angles of 0° to
110°) as follows. First, we corrupt each image with independent zero-mean noise having a
variance of 50 (this corresponds to an average input SNR of about 3 dB). Next, the
corrupted image is zero padded and a 64 X064 FFT is performed. This is used to obtain the
correlation of the noisy input with all three filters (MSF, POF, and OPOF), and the value
at the origin is registered. We repeat this process 100 times and find the average value of
the output at the origin along with its variance. The ratio of the first quantity squared to
the second gives an estimate of the SNR. Figure 2-17 shows the output SNRs of the three
filters as a function of rotation in degree. It can be observed that the POF is the most
sensitive filter to distortion in output SNR. The MSF and OPOF, on the other hand,
exhibit a more tolerant behavior than POF. It is worthwhile to point out that the MSF in
this case showed more tolerance to input rotation than has been previously reported23.
The extreme sensitivity reported about MSFs*® was for the case where the filter is
optically recorded on a holographic plate, hence amplitude modulated on a high frequency
carrier. The presence of this carrier causes the slightest mismatch between the input and
the reference signals to considerably affect their correlations. This is not the case in our
simulations wherein the MSF is simply stored as a complex array.

We further tested the relative sensitivity of POF with respect to MSF and OPOF on
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Figure 2-17: SNR (vs) input rotation for tank image for MSF, POF, and OPOF.
the pliers image. This time, the distortion consists of in-plane rotated versions of the
image. We performed exactly the same simulation steps as described above. Fig. 2-18
summarizes our results. It essentially confirms the same conclusions drawn above about
the sensitivity of POF. Note that in this case the OPOF and MSF exhibit more sensitivity
than in the previous case. Nevertheless, their output SNR did not degrade as sharply as

that of the POF. This is especially noticeable for input rotations between 0 and 30 degrees.

2.7. Two-class Problem

In a two-class discrimination problem (also referred to as generalized detection

problem4), we have two hypotheses
H, : r(z) = s,(z) + n(z),
and

r(z) = s,(z) + n(z), (2.73)
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Figure 2-18: SNR (vs) input rotation for pliers image for MSF, POF, and OPOF.
where, r(z) denotes the observed (or received) signal, s,(z) and s,(z) denote the two
reference signal we deal with, and n(z) a realization from a zero-mean random process
with power spectral density Pn(f). The objective is to use the obscrvation r{z) and,
optimally, decide on which signal is present at the input, i.e., optimally discriminate
between s,(z) and s,(z). For this purpose, we choose the filter transfer function H(f) to
maximize the SNR, now defined in its general context as

| E{y(0)/ H ,} — E{w(0)/ H ,}|?

SR = var (5(0)/ H ) ' (&

&)

~]

£
~—

Eq. (2.74) can be written as
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where,
') = S,(N) = S,f) - (2.76)

It can be seen from Eq. (2.75) that the SNR expression in this generalized context is
identical to the SNR expression given in Eq. (2.2), except that the reference signal s(z) in
Eq. (2.2) is now replaced by the difference of the reference signals s'(z) = s,(z) — s,(z)-
Hence, we expect all our earlier results to hold by using s'(x) as our “reference* signal.

Thus,

S'*(f) (S, (N) =S, ()
P (/) P.(f) '

Hopt(f) = «a
Likewise, the OPOF is given by (as in Eq. (2.7))

Hopor (/) = I (/) €7, (2.78)

where &, is the phase of Sl(f)-- Sg(f) and Ropt is the optimal support of the OPOF.
Hence, all the techniques of OPOF design presented earlier can be applied in this context
by using §'(z) = s,() — s,(7) for our reference signal. In the following section, we present

some computer simulations dealing with a 2-class problem.
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2.7.1. Computer Simulations

We provide here the results of the computer simulations that were wimed ot
discriminating betwecen the tank image shown in Fig. 2-3 and the Armored Personnel
Carrier (APC) image shown in Fig. 2-19. Both images are 32X 32 gray level with pixels

ranging in intensity from 0 to about 60. To construct the matched filter and PO, we

Figure 2-19: APC image used in the simulations.
generated a third “image" by subtracting the APC image from the tank. This image was
then zero padded and a 64X 64 FFT was performed. Fig. 2-20 shows the magnitude of the

resulting Fourier transform. It can be seen that it is more "scattered" than the magnitude

Figure 2-20: Magnitude of FT for difference between tank and APC.
of the FT for the tank image alone (shown in Fig. 2-5). The DC term has now dropped
from about 4044 to about 1826. The dominance of the low frequency components has now

decreased. This result agress with the intuitive idea that discriminatory information lies
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mostly at high frequencies (i.e.. wdong the edges of the images)™ Fig. 2-21 shows the phise
of the POI’ (and OPOI), and IYig. 2-22 shows the optimal support generated by our
algorithm. It has 1073 pixels "ON*". It is interesting to observe that the optimal support

now has a clear multiband structure, and that it is no longer emphasizing only low

frequency components.

Figure 2-22: Optimal support for tank (vs) APC.

To obtain estimates of output SNRs, we corrupt both the tank and APC with
independent noise (with variance 1, 2, 5, 10, 50, 100, 200, 500, and 1000). The corrupted
images are then zero padded to 64 by 64 and the output correlation (at the origin) of both
the tank and APC with all three filters (MSF, POF, and OPOF) is individually recorded.

We repeat this step 100 times for each variance. The output SNR corresponding to each

XIThis can also be explained by the fact that since both tank and APC images are low {requency
signals, taking their difference will cause the common components (namely DC and low frequency)
to somewhat cancel out. '
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mput noise variance 1= obtained by averszing the output assoctated with voe t0 Lad the
APC, taking their difference squared and dividing 1t by the vanance of cither output (both
variances should be equal). Fig. 2-23 summarizes our results. It can be s+, ounce again,
that the MSF yiclds the highest SNR (with a PG of about 30.2 dB). Next comes the OPOF
with 2 dB less SNR (with a PG ol about 283 dB). Finally, the POI is 1 dB below the

OPOF (the PG is about 27.3 dB). Thus, support optimization has provided us with a gain

in SNR of 1 dB (versus 1.5 for the pliers and 3.5 dB for the tank).
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Figure 2-23: Output SNR (vs) input SNR for tank-APC.
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2.8. OPOF With Detector Noise

2.8.1. Problem Formulation

A:s can be seen from Fig. 2-7, the OIPOF has a much smaller support than the POF,
and this will undoubtedly cause a decrease in light throughput. As a matter of fact, for
this particular simulation example, the Horner>1 cﬂ'iciencyViii for the OPOF and POF was
computed and found to be 70% and 1009 respectively. If the goal in proposing phase-only
filters is to seek higher light efficiency, amongst others, why reduce the filter’s support as
was done in OPOFs? Actually, when we derived the OPOF, our only criterion was the
SNR in the corrclation plane (prior to detectors) since we implicitly assumed that our
output detectors are ideal. However, a more rcasonable approach to this problem is as
follows: Assume that the input image is corrupted by some additive noise, and that the
output detector adds sorn'z noise (assumed to be independent of the input). Then we must
determine the OPOF to minimize the probability of error.

Since we are considering only the dectection problem, we will focus on the origin of
the output correlation plane. We model the detector placed at the origin as providing a
gain of a o the magnituce of the light falling on it and introducing detector noise et
For example, if light with magnitude A and phase 0 (i.c., Aejo) falls on the detector, then

its output is given by

vy = MNA + n (2.79)

det

9

where . 1s a zero-mean random variable with variance a;et and is assumed to be

independent of the light falling on the detector'.

ViiThe Horner Efficiency is defined as the ratio of the energy reaching the output plane to the

energy in the input signal.

lxAct,ua.lly, we expect the noise generated in the detector to depend on the strength of the signal
generated by the incoming light. In other words, we expect this noise to be signal dependent.
Unfortunately, this type of noise is much harder to analyze, and we need to make this simplifying
assumption to be able to perform somne analytical investigation of the problem.
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Now, the observed signal (at the input of the correlator) consists of just noise (under
hypothesis HO) or the reference signal plus noise (under hypothesis Hl)’ le.,

H,: (signalabsent ) n(x) = n(z)
?

H, : (signal present ) 1(x) = s(z) + n(z) , (2.80)

where, n(z) is a realization from a stationary random process with positive mean m, and
Power Spectral Density (PSD) P (f), and s(z) is the reference signal, which also has a
positive DC value. Even stronger, we are assuming that both n(z) and s(z) are non-
negative. This is in agreement with the fact that in practice, 2-D signals (images) are non-

negative. Let ys(O) and y"(O) denote the output (that is just reaching the detector at the

origin of the correlator plane) due to s(x) and n(x) respectively®. Explicitly, we have

y,(0) = / ” S(NH(f)df , (2.81)

-0

and

4, (0) = / ™ n(@)h(—z) dx . (2.82)

—00

where h(z) is the impulse response of the filter placed at the frequency plane of the

correlator. Note that yn(O) is a random variable with mean

o
m, = m H(0) = m"/ h(z)dz (2.83)

1,
‘In —0oC

and variance

XIn the following, we shall assume that y (0) and yﬂ(O) are positive. While the solution that will
be presented shortly guarantees that yq('()) is positive, it does not always yicld a positive yn(O).

However, one can argue from the fact that n(z) is positive and that the p.d.f. of the random
variable yn(O) is sharply centered around its (positive) mean, that the probability of yn(O) being

negative is negligeable.
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@ = [ RHOP - (2.84)

1
In —0o0

Hence, under hypothesis HO, the light falling on the detector is given by yn(O), and

its output becomes
Vdet = A Iyn(o)l + Rget = >\yn(0) + Tdet * (2-85)
The above Vgt is a random variable with mean

E{vdct/ HO} = )ﬂny = X\ m’nH(O) , (2.86)

n

and variance

2

9 2
var{ug/ By} = N0, + oy

On the other hand, under hypothesis Hl' the light falling on the detector is equal to
y,(0) + ¢,,(0), and its output becomes

Vi = My 0)+y,(0) + ny, = My 0) + 2y, (0) + ngy,, . (2.88)
In this case, Vet is a random variable with mean

E{vdet/ Hl} = )\ys(O) + X mnH(O) , (2.89)

and variance equal to the variance under hypothesis HO.
Now, the objective is to find H(f) to maximize the generalized SNR expression
earlier defined in Eq. (2.74) and given by

(» 4,(0))*
SNR = ———. (2.90)

2 2 2
A ayn +0 4.

Using Eq. (2.81) and (2.84) in Eq. (2.90) we get
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where, the term Q in the above denotes the quality of the detector and is defined as

2

Q = . (2.92)

0
-

T det

>

The larger Q, the better the quality of the detector since it implies more efficient and/or

less noisy photo-electronic conversion.

2.8.2. OPOF derivation

In this section, our objective is to design an optimal phase-only filter that maximizes
the SNR given in Eq. (2.91). Thus, we now constrain the filter used in the optical

correlator to be of the form given in Eq. (2.7), namely

H(f) = 1,(f)e®D | (2.93)

where &(f) is the sought after phase of the OPOF, and R is its support, yet to be

determined. Using Eq. (2.93) in Eq. (2.91), we get

[ / S(f)e"‘””df]"
SNR = —= . (2.94)
o=l + [ Pnas

[t can be easily shown that the optimal phase function is given by
Poptl) = =2,(/) (2.95)

resulting in the SNR expression (function of R)
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Eq. (2.96) conveys the whole point behind designing OPOFs with detector noise. Even
though the optimal phase in this case is identical to that found when no detector noise was
taken in considerations, the optimal support is directly affected by the quality of the
detector. This can be observed by letting Q approach infinity (i.e., the detector
approaching an ideal one). Then, the SNR expression approaches that already derived
without noise detector (given in LEq. (2.11)). Hence, we expect that as Q approaches
infinity, the optimal support tends to that derived previously. On the other hand, as Q
becomes smaller, the integral in the denominator of Eq. (2.96) becomes more negligeable
and the optimal support R becomes larger. In the limiting case where Q approaches zero,
the optimal support must be as large as possible since the variations of the integral in the
denominator are neglected, and by using the largest support we get the largest possible
numerator (even though the SNR will still tend to zero for practical finite energy spectra).
In other words, what Eq. (2.96) conveys is that in situations where the detector is “good*
we can focus mostly on the effect of the noise at the input and solve for the optimal
support to minimize its effect. However, in situations where the detector is “bad" we
should enlarge the optimal support so that more light reaches the output (hence the signal
obtained at the output of the detector is stronger) and the SNR increases.

It can be once again easily shown that the optimal support is even symmetric for real
reference signals and, for the case of white noise, can be written as the set of those
frequencies at which the magnitude of the signal spectrum is above some threshold €
Furthermore, if we assume the OPOI' to be a low pass filter, then EQ. (2.96) can be

written as
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SNR gpop (W) = 2 (2.97)

where Wh above refers to the cut-off frequency of the OPOF. To find the optimal H’h, we
set the derivative of the SNR in Eq. (2.97) with respect to le to zero. Thus, Wh is the

solution to the following transcendental equation.

2 W -1
Far BN @AM =

1 Wh )
e (298)

Once again, it can be seen that as Q above approaches infinity (i.e., ideal detector), Eq.

(2.98) becomes identical to Eq. (2.37).

2.8.3. Analytical Examples

We now consider some analytical examples to illustrate the design of OPOF support

in the presence of detector noise.

2.8.3.1. Triangular Spectrum
We consider in this example the same triangular signal spectrum given in Eq. (2.41).

We assume the input noise to be white with level Ny Thus, Eq. (2.98) yields
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Some interesting observations can be made from Eq. (2.99).

e Unlike previously, ”/h now depends on all parameters, including IV,, the noise

PSD level.

e For all non-zero values of @, /V,, we have

5
- s
3W8 < W, < W, . (2.100)
e As QNO approaches infinity (indicating the detector is approaching an ideal
detector and/or the input noise power is getting larger), Wh approaches
2”/3/3' This is the cut-off previously derived with no detector noise
considerations. Thus, large values of QNO call for more emphasis on the input

noise.

e As QN0 approaches zero (indicating the detector is approaching a very “bad"
detector and/or the input noise power is getting smaller), ¥, approaches w..

This is the largest cut-off frequency that can be achieved. Thus, low values of
Q‘NO call for more emphasis on the detector noise by asking for a larger

support than it would normally be without detector noise considerations.

. Wh monotonically decreases with QNO.

The last three observations are summarized by the plot of Wh as a function of QN0

shown in Fig. 2-24.
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Figure 2-24: Plot of H/h as a function of QN()'

2.8.3.2. Cosinusoidal Spectrum
In this example, we consider the cosinusoidal signal spectrum given in Eq. (2.48),

with a white noise of level V. Eq. (2.98) yields

2 1 H/Iz
— NW, + (QN) ! = / cos (7 [/2W )df
Ny 07" h 0 cos(leh/?,W's) 0 8
20
e 2W, 4+ (QN)™! = - tan (7W, /2W )
1/Vlz oW AN -1 1 1rWh 0
o G neNyT = Dt 2101

The above transcendental equation has been numerically solved for various values of
W"QN0 and the resulting solution "VI;/"Va is plotted in Fig. 2-25. [t can be observed that
as W.’QN0 approaches zero (which results when the detector is “bad* and/or the input
noise is negligeable), Wla approaches W (the largest it can get). On the other hand, as
WsQN0 becomes large (which results from a "good" detector or powerful input noisc), w,
approaches 0.742 W6 (the result already found and given in Eq. (2.50)) indicating that

emphasis is now on the effect of the input rather than the detector noise.
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Figure 2-25: Plot of l'Vh/M’s as a function of ‘VSQNO

2.8.4. Realistic 2-D example

In this section, we illustrate the design of OPOF in the presence of detector noise
with the help of a 2-D realistic signal. We assume white input noise. With this assumption,

the discrete approximation to Eq. (2.96) is given by

K 2
[Z IS(i)IJ
1

=]

SNR(K) = (2.102)

No (@N) ™' + K

where in the above equation, we assume that the pixel magnitudes |S{(7)}, 1 = 1,..., d,
have been sorted in descending order.

We have modified our algorithm for support selection to take into account the extra
term in Eq. (2.102) due to the detector noisc. We have applied the modified algorithm on
the tank image shown in Fig. 2-3. As already mentioned, we expect the supports
gencrated to depend on the factor QNO. The larger its value, the more we weigh the input

noise with respect to the detector noise and vice-versa. This is illustrated by Figures 2-26
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- 2-28. Figure 2-26 shows the support ol the OPOF with @ N > 1. As expected, it is the
same as tn Figure 3, sice for large values of Q[\’O we tend to ignore the detector noise all
together. Figure 2-27 shows the support with QN0=O.OOI. The support size has grown
from 59 pixels to 1481 pixels. This larger support allows more input light through to
counteract the detector noise. Finally, Figure 2-28 shows the case where _QNOZIO'S. The
support has expanded almost to the maximum it can get to, since now the detector is the

limiting factor in the system.

Figure 2-26: OPOF support with Q Nj>>1.

Figv ‘e 2-27: OPOF support with QN0=O.001.

2.9. Conclusion

In this chapter we investigated ways of designing optimal (in the sense of maximizing
the Signal-to-Noise Ratio) phase-only filters (POFs). We introduced the notion of OPOFs
which are obtained by determining the phase functions that maximize the resulting SNR.

These OPOFs happen to have the same phase functions as the conventional FOFs except
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Figure 2-28: OPOF support with Q[\’Ole's

that their supports must be chosen carclully. While we have not determined the exact
nature of the support for arbitrary signal and noise scenarios, we were able to provide
some characterizations that should help towards that goal. We were also able to propose a
constructive algorithm for the OPOF for the special case of signals corrupted by additive
white noise. Some observations about the support allowed us to find a very efficient sub-
optimal algorithm for OPOF design. The loss in SNR of this highly efficient algorithm is
very negligeable compared with the speed up lactor it offers. We illustrated with the help
of analytical examples as well as simulation results that the improvement in SNR obtained
from the optimal POFs can be significant. The sensitivity of POFs to input distortions
relative to OPOFs was also investigated. Our simulation results support the fact that
POF's are highly sensitive to distortions, as their performance (in terms of SNR) sharply
degraded with input rotations. On the other hand the OPOF scems to exhibit a more
robust behavior.

An obvious disadvantage associated with the proposed OPOFs is that the resulting
output correlations are broad and thus the resulting accuracy in locating the objects will
be poor. This is a direct consequence of the fact that the OPOFs have much lower
bandwidths compared to the conventional POFs. However, the larger bandwidths of the
conventional POFs allow all the input noise to pass through without any attenuation.
Thus, the conventional POF yields lower SNR values, but sharper correlation peaks

compared to the proposed OPOFs. Thus, a choice must be made by the user as to which
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measure is more relevant to the particular application at hand. The SNR measure is
aimed at characterizing the filter perlormance in the presence of additive noisec whereas the
correlation peak sharpness is maximized when good location accuracies are required.

Furthermore, the smaller overall support of the OPOFs will also result in less light

through-put compared to the conventional POFs. This is probably acceptable for

applications where high quality detectors are used. However, if the noise generated in the
detectors is not negligeable, or if the light budget in the system is tight, some
considerations should be given to the detector noise. This enticed us to investigate
designing OPOF in the presence of detector noise. The results we provided in this context
turned out to be an intcresting generalizing framework for the design of OPOFs,
Essentially, they support our previous findings for "good enough” detectors and as their

quality degrades, less emphasis is given to the input noise by enlarging the support further.
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Chapter 3

Binary Phase-only Filters

3.1. Introduction

The previous chapter focused on the use of Phase-Only Filters (POFs) in optical
correlators. POF's are useful since they lead to simpler {ilters by eliminating the amplitude
variations. This constitutes a first step towards achieving real-time correlations using the
recently introduced Spatial Light Modulators (SLMs)G’ 78 which operate in a phase-only
mode. Most of these devices® 7’ 25, however, function in a binary mode, hence requiring
the use of Binary Phase-Only Filters (BPOF's). Earlier efforts obtained BPOFs by a simple
binarization of POFs. Different binarization schemes were used. Some of these were based
on the binarization of the real pa.rt3 of the POF (that we shall denote by Sr(f)), some on
the imaginary part!® (denoted S,(f)), and some on their sum!l. However, there is no
obvious reason for choosing one scheme or the other, and this lack of rigorous
understanding precluded any consideration of optimality.

Recently, there has been some development of relevance to the design of BPOFs.
This has to do with the choice of the Threshold Line Angle (TLA)26 in constructing the
BPOFs. Farn and Goodman® proved“"i that the optimal (in the sense of maximum SNR)
BPOF phase assignment is equivalent to optimally selecting the TLA. This basically

divides the complex plane into two half-planes such that any phase angle (of the reference

signal) falling in one half-plane is quantized to one value and any phase angle falling in the

xlHowever, in their proof, Farn and Good man5 missed an important detail. We shall cover this
point in a forthcoming section.
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27, 11, 28, 26, 5 scem to

other half-plane is assigned the other value. Several research groups
have independently realized that the TLA is another variable that can be optimally
selected. to improve the performance of the BPOF. Furthermore, BPOFs were in most
cases constrained to have values of +1 or -1. The justification for this is that some of the
SLMs® operate with a = phase difference between the two phase values. However, some
SLMs (such as the Deformable Mirror Device (DMD)S) allow for a much larger dynamic
range in phase. This allows the use of more general BPOFs that take on phases £ or .

5 were the first to treat this more general BPOF and optimally solve

Farn and Goodman
for € and ¥ to maximize the SNR.

Nevertheless, all the above approaches still lacked an important ingredient in the
design of BPOFs. No attention was given to the the support function which was taken to
be arbitrarily large. As argued in the POF case, this could cause the output SNR to be low
(possibly zero!). Thus, even though some of the parameters involved in BPOFs have been
optimally chosen, the above designs are not truly optimal (in the sense of maximum SNR).
In this work, we aim at filling this gap by incorporating the support function within the
design of BPOFs. While Farn and Goodman® have proposed an efficient method for
selecting the TLA for a given support, we shall consider the selection of both the TLA and
the support simultaneouslyx“. This will allow us to assess the relative effect of these two
design parameters on the SNR. We will show through numerical evaluations that choosing
the optimal support function seems to increase the SNR by about 4 to 6 dB, whereas
choosing the optimal TLA seems to increase the SNR only by about 1 to 2 dB (this

confirms earlier=® theoretical predictions that varying the TLA would not improve the

SNR by more than 2 dB).

X'With the introduction of the support function in BPOF, the filter is not two-valued any more.
It takes on the two phase values (e.g., # and 0) with amplitude 1 as well as the zero amplitude.
Thus, it should perhaps be termed the ternary-valued filter or ternary phase-amplitude filter

(TPAF)?9.

64




In this chapter, We shall propose cfficient algorithms for the design of the optimal
BPOFs. The first is an extension of the algorithm presented in the previous chapter. The
second,.a very efficient sub-optimal algorithm, is also a generalization of the sub-optimal
algorithm presented earlier. Hence, in some scnse, this chapter can be regarded as an
extension of the previous one. This extension will be clearest when we show that the
algorithms of the previous chapter can be applied to the BPOF case after slight
modifications. This has the implication that many of the results we obtained with the
POF also hold with BPOFs. Thus, the effect of detector noise, the window approximation
to the support, etc., all follow directly from the POF case. In an effort to minimize the
redundancy, we shall be concerned mainly with the salient design aspects of BPOFs that
did not arise while treating POFs. Amongst such aspects is the bifurcation phenomenonso.

The remainder of this chapter is divided as follows. In Section 2 we provide the
analysis necessary to introduce our [irst algorithm for optimal BPOF design. Section 3
presents some numerical and simulation results using realistic 2-D images. Section 4
outlines a very efficient sub-optimal algorithm. Section 5 is used to show how to cast the
BPOF design in the context of the POI. This will help to make use of some of the
previous results. Furthermore, we shall provide in that section a more rigorous proof of the
main result of Farn and Goodman® regarding Optimal BPOFs. In section 6 we investigate
the bifurcation issue, characteristic of BPOF. Section 7 presents some computer

simulations about the sensitivity of BPOF and Optimal BPOFs to input di .ortions.

Finally we provide a summary in Section X.
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3.2. Efficient Algorithm for Optimal BPOF Design

3.2.1. Analysis

In the following, we assume BPOF's to be constrained to take on the values +1 or -1.
The two remaining parameters at hand in the design of BPOFs are the TLA 6 and the

support. Thus, the BPOF is written as
H(f) = I, Sgn(S(/) cos(0) + Si(f)sin(())) , (3.1)

where I, is the indicator function for region R (the support) and where Sgn(z) is defined as

(3.2)

+1 fz >0
Sgn(x) = { .

—1  otherwise

Hence, We now focus on the sign of (5,(f) cos(6) + S,(f)sin(0)) instead of S (f) or S,(/f)
alone. Geometrically, this can be described as projecting the complex vector S(f) onto the
unit vector with coordinates (cos(8),sin(0)) and assigning the sign of the projection to the
BPOF. This is illustrated in Figure 3-1. The BPOF form given in Eq. (3.1) unifies all the
binarization schemes that have been proposed. Hence, § =0° corresponds to the
binarization with respect to the real part® of S(f). 6 =90° corresponds to the
binarization with respect to the imaginary partm, and § =45° to the Hartley transform
binarization schemel!.

Now we seek to find the optimal values for 8 and R to maximize the SNR given by

| [ sty Har
SNR = , (3.3)

[ PN VH P g

where the limits of integration are from —oo to +0o0. The idea is to fix § and optimize for

that choice the SNR with respect to the support R. This process is repeated for all possible
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AIm

H(f)= +1

0 Re

H(f)= -1

Figure 3-1: General binarization scheme
values of TLA, and the combination of TLA-support that yields the largest SNR is
selected. Let 8 be fixed. Let us define the partition (21,22) of R (i.e., Rl Nn R, = @ and

R, U Ry = R) as follows:

R, = {J€R:IS,(Neos(®)] > |S{f)sin(0)} (3.1)

1

and
Ry ={f€R:|S(f)cos(0)l < [|S,(f)sin(d)l} - (3.5)

For real s(z), S (f) is even symmetric and S,(f) is odd symmetric. Thus, R} and R, can
be seen to possess even symmetryxVii. Using Eq. (3.1) in the SNR expression (Eq. (3.3))

and using the fact that 'Ql and }22 are symmetric, we get

Vilwe are implicitly assuming that £ is even-symmetric, i.e., if a particular spatial frequency /
is contained in R, then its negative -f is also contained in R. We can construct counter examples
where asymmetric choices for R yield higher SNR values than the best symmetric choice. However,
symmetric R choices yielded the best SNR whenever s(z) corresponded to a real, positive function.
Thus, we believe that (even though we are unable to prove it) for real image correlations we can
assume that R is even-symmetric without loss of optimality.
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[ (S0 + IS Sl (N eos(0) + SNsin0)] df 1
RIUR,

SNR =
P(Ndf
R U R,

| /R 5.(f) SgalS () cos(0)] df + /}e S,(/) SenlS,(f) sin(0)] df [

_ 1 2
AL
21U22
ISgn cos(6 ]/ ldf + ]Sgn[sm 0)]/ Nldf |2
[ ALY
RIURQ
[ seonas] [ [ isenar|
S Ra
= (3.6)
P(/)df

RluR,,

In the above we made use of the fact that Sgn (A + B) = Sgn (A) whenever |A|] > |B|.
Let us note that 0 need not be outside the range [0,7/2]. First, from Eq. (3.1), if H(/f) is

obtained using angle § and if H'(f) is obtained using 6/ = 0+, then

H(f) = ~H(J) . (3.7)

This sraling does not affect the SNR and can be ignored. Furthermore, from Eq. (3.6), it

is observed that the only way § affects the SNR is through the partition (R,,R,). Again,

by looking at Eqs. (3.4), (3.5), we conclude that angles 8 and 0" = 7 — @ will yield the
same regions Rl, R,. Hence, we only need to consider values of § in the range [0,7/2].

It turns out that we can apply the same idea (in the discrete domain) as in the

OPOF case for white noise to find an efficient way of optimizing the SNR in Eq. (3.6).

For a given 0, we define the two regions
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Ppo= {7 :[S(?)cos(0)] > [S;(¢) sin(0)]} (3.8)
and

Py = {1 :1S(¢) cos(0)] < [S,(4)sin(0)|} . (3.9)

The values |S (¢)| for ¢ € P and the values |S(2)| for © € P, are then sorted in

descending order. Hence, a discrete approximation for Eq. (3.6) is

Ko Ky 2
e+ [Zu
1=1 =1
SNR = K, +IK, ’ (3.10)

where I(l and 1{2 denote the number of pixels in P, and Py, respectively. Here the

superscript 7 in | S:l and | S:l refers to the 7th largest value in the corresponding array.
Now, we need to find the optimal values of Kl’ K2 through a search along the grid

(i.e.,, we fix K| and find the optimal value of K, and repeat this process for all values of

Kl and choosc the best case]. The next scction presents the details of this optimization

algorithm.

3.2.2. Algorithm

STEP 0: Determine P and 7, according to Eqs. (3.8) (3.9). Let /V, and N,
denote the number of pixels in P1 and P,, respectively. Without loss of

generality, assume that N‘.Z < Nl‘

STEP 1: Arrange |S (m)| for m € P, and |S/(m)| for m € P, in the following
order.
1 2 ]
I e I - N A
r r
ol 2 ]
I B P 1 IERR- S ICACT I StV
Set all parameters such as /cl, k2, /clOPT, kaT, SNR MAX RESUM
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r—“r

(real-part running sum) and IMSUM (imaginary-part running sum) to
zero.

w
~
]
o
o

by — k +1

RESUM — RESUM + |S'1]
]

SNR (k),k,) = [( RESUM )* + (IMSUM )]/ (k,+k,)

If SNR (k;,k,) > SNR, .y, SNR /s = SNR (k,,k,),

OPT OPT
lcl = kl and k2 = Ic2.

Otherwise, no changes.

STEP 3: If kl < N, go to Step 2.
Otherwise, k, — (k2+1).
If ky > N,, go to Step 4.

Otherwise, RESUM = Q, lcl = 0, IMSUM = IMSUM + |Sjt2|
t
Go to Step 2.

OPT T

OPT . OPT opP
STEP 4: Output kl , k2 and SNR , .,y Knowing &, and k,
defines the optimal support uniquely.

The above steps are repeated for all possible values of TLA 8, and the case leading to
the best SNR is selected. Numerical evaluations illustrating the resultant performance

improvement by applying the above algorithm are presented in the next section.

3.3. Numerical Results

To illustrate the improvements possible with the optimal BPOF, we performed
numerical experiments using the same 3232 tank image used previously. This image was
placed in a 64X 64 array and zero-padded to reduce sampling effects. The center of the
tank image was made to coincide with the origin of the 64 X064 array. As pointed out by

l.“, the performance of BPOF is a strong function of the image center and we

Cottrell et. a
ensured that the image is centered at the origin. This image has an energy of 73860 in its

even part and 48708 in its odd part. This corresponds to a total image energy of 122568.
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Assunnng the white noise variance ,‘\"” to be Tothius represents a Matched Filter (MI7) SNR
equal to 122568 or 50.8% dB.

Next, we performed the 64X 64 2D Fast Fourier Transform (FFT) on the array and
used Ll;e cefficient algorithm outlined in the previous section to identify the optimal Pl and
P2 for several @ values. We also computed the resulting optimal SNR ggp the Horner
efl'iciency6 for the optimized BPOF and SNR BFOF obtained by using a BI’OF whose
support 1s the entire 64X 64 array. The SNR values are shown in Fig. 3-2 as a function of

the Threshold Line Angle. Note from Fig. 3-2 that all BPOF SNRs are lower than the
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Figure 3-2: Output SNR (vs) TLA for BPOF and Optimal BPOF
for centered tank.
50.88 dB provided by the classical MF. The unoptimized BPOF yieids SNR values ranging
from 40.25 dB (for § = 90°) to 41.15 dB (for § = 0°). This represents a degradation of
about 10 dB in SNR. On the other hand, the optimized BPOF yields SNR values ranging
from 44.68 dB (for § = 65°) to 46.68 dB (for 6 = 0°). This represents a degradation in

SNR from 4.2 dB to 6.2 dB compared to the matched filter. Thus an SNR improvement of
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5 dB can be obtained (for the particulur cases studied) by sciecting the support Dunetion of
the BPOF in an optimal manner . This observation seems to be true for essentially afl ¢
values.

In Fig. 3-3(a)-3-3(c), we show the optimal support function for § = 0" (33 pixels

“ON*"), § =060"° (19 pixels “ON"), and 0 =90" (58 pixels "ON"), respectively. In

(a)

Figure 3-3: Optimal supports for § =0°, 60°, 90° using centered tank.
particular, note the two unconnected regions in Fig. 3-3(c) for the support function. In
Fig. 3-4, we show the Horner light effliciency of optimal BPOIs as a function of the
Threshold Line Angle. Note from Figs. 3-2 and 3-4 that the Horner efficiency of the
optimized BPOFs exhibits more fluctuations than the SMR as the TLA varies, changing
between 56.6% (for § = 90°) and 35.9% (for 0 = 60 °). It is interesting to note that as §
gradually changes from 0° to 60°, both SNR ggl‘ and Horner efficiency keep
decreasing. Hence, in this regard, § = 60° could be considered as a *worst case* TLA.

As already mentioned, the performance of BPOF's strongly depends on the position of
the reference image in the FFT array at the time the [ilter is synthesized. In the above
results, the tank has been centered in the FFT array. To investigate the cffect of moving
the reference image around, we positioned the tank in the upper left corner of the 64 by 64
FFT array. The energy in the even and odd part became both equal to 61283.9. This is to

be expected, since the flipped version of the tank now has no overlap with the tank image

itself. The numerical results in this case are summarized in Figs. 3-5 and 3-6 which are the
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for non-centered tank.
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counterparts of Figs: 3-2 and 3-14, respectively. The most noticeable change s the fuct that
the output SNR for bhoth BPOI and OBPOF corresponding for TLAs greater than 45 have
now increased. Actually, this happened even to the extent that the OBPOF(im) now yields

the highest output SNR. This is a direct consequence that we have given more weight to
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Figure 3-6: Horner light efficiency (vs) TLA
for non-centered tank.

the imaginary part of S(f) by redistributing the signal energy more evenly.

All the results presented above are based on numerically evaluating the SNR in Eq.
(3.10). Some simulations were carried out on the same tank image. Six [ilters were used:
the BPOF and optimized BPOF corresponding to 8 =0°, 45°, 90° . These filters are the
same as those used in our numerical computation of SNRs with the tanl centered in the
FFT array. We obtained an estimate of output SNRs with all six filters by adding zero-
mean, unit variance Gaussian noise to the tank image. Next, the corrupted image is
padded with zeros, and a 64 by 64 FFT is computed. The correlation outputs at the origin

are then recorded. This process is repeated 100 times and estimates of SNRs are comnputed
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through averaging. Fig. 3-7 depicts the output SNR as a function of input SNR for the
BPOFs corresponding to 0 = 0° (this case is denoted by BPOF(re)), 0 = 145" (denoted
BPOF(ha)), and 0 = 90° (denoted BPOF(im)). Even though the three curves are close
Logethér, a hierarchy can be observed wherein the BPOF(re) yields the highest SNR
followed by BPOF(ha), and finally by BPOF(im). This is in agreement with the numerical

evaluations presented in Fig. 3-2. Fig. 3-8 is analogous to Fig. 3-7 except we usc the

OUTPUT SNR (dB)

Legend
| 8POF(im)
O 8POF(re)
® BPOFf(ho)

10 T T —T ¥ T
-10 -5 Q H] 10 15 20 3
INPUT SNR (dB)

Figure 3-7: Output SNR (vs) input SNR for
BPOF(re), BPOF(ha), and BPOF(im) using centered tank.

Optimal BPOFs instead. It can be scen that the support optimization provided an
improvement in SNR by 5 to 6 dB. Furthermore, the OBPOF(re) yielded an SNR slightly
higher than the OBPOF(ha). The output SNR of the OBPOF(im}) is noticeably below both
that of the other two filters. In addition, we noticed that the output SNR (in all cases)
corresponding to an input noise variance of 1 (i.e., a 0 dB input SNR) are all within 1.4 dB
from the numerically computed values. Table 3-1 summarizes our results, Moreover, as

an illustration, Fig. 3-9 depicts the output SNR of BPOF(re) and OBPOF(re) in reference
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Figure 3-8: Output SNR (vs) input SNR for
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Output SNR(dB)

Simulation Numerical
BPOF OBPOF BPOF OBPOF
0= 41.68 48.05 41.15 46.68
0=45 414 47.85 40.72 46.51
9=90 41.0 45.88 40.25 44 82

Table 3-1: Simulation (vs) numerical results BPOFs and OBPOFs
using tank image.

to the MSI', POF, and OPOF found in the previous chapter. A clear hierarchy can be

observed. First, and as expected, the MSEF has the highest SNR followed by the OPOF
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(with 1.5 dB less SNR). Nextoas the Optinal BPOL with about 3 dB less SNR than the
MSF followed by the POI® with a degradation of the order of 5 dB. At the lowest rank s
the BPOF with an output SNR approximately 10 dB lower than the MSF and 5 dB3 lower
than c'he POF. This last result is within the maximum 6 dB drop in SNR due to

binarization predicted by Dickey et al.>3.
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Figure 3-9: Output SNR (vs) input SNR for
MSF, POF, OPOF, BPOF(re), and OBPOF(re) using centered tank.

All the above numerical evaluations and simulation results were carried out for the
pliers image presented in the previous chapters. The improvement in SNR due to the
support optimization varied from 2 to 4 dB. All simulations were also within 1.2 dB from
the numerically computed SNRs. Furthermore, alinost all of the observations and trends
discussed for the tank image apply to the pliers. Namely, the SNR again showed little
variations with respect to the TLA (less than 0.5 dB for BPOF and about 2 dB for
OBPOF). Also, the Horner light efficiency exhibited more variations than the SNR. The

variations in this case, however, are more noticeable than tor ine tank image and are
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for centered pliers.

shown in Fig. 3-10. Notice the large jump for TLAs equal to 85 and 90 degrees. The rest
of the data and results are rather similar to the tank example. We omit their presentation
for the sake of conciseness.

It can be seen from the above discussion that the TLA and support function offer
two degrees cf {reedom in the design of BPOFs. If light efficiency is not a problem (for
example in applications where ample light is availakle), it is recommended ihat we invest
our computational resources in the optimization of the support function, assuming
6 = 0°. The justification for this is that SNR showed a relatively small variation (for
the particular cases studied) with respect to the TLA (about 2 dB for the optimized BPOF
and about 1 dB for the unoptimized BPOF) along with the fact that most images are even-
part dominated. Our simulation results further support this argument (0 = 0° yields the
best SNR and an acceptable light efficiency level). If on the other hand light is at a

premium, then more attention should be given to the TLA. For instance, § = 90° with
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the pliers image seems to be a plausible solution since it has the highest Horner efficiency

at the expense of only a 2 dB degradation in SNR.

3.4. Very Efficient Sub-Optimal Algorithm for BPOF Support

Optimization

3.4.1. Analysis

We base this very efficient algorithm on the observation summarized in the following

proposttion.

Proposition 1: If the real (imaginary) part of two or more pixels in Pl
(P,) are equal in absolute value, thev are cither or none included in the optimal

P, (7).

Proof: The proof is very similar to that of the corresponding proposition
in the previous chapter. The only difference is that the optimization is now
performed on a grid. Hence, the only thing that needs to be chiecked is that by
replacing the discrete version of the SNR expression (given in Eq. (2.65)) by

SNR™ (k) = . : (3.12)

where ¢ and b are arbilrary non-negative constants, the conclusion of the first
part of the proof of proposition (3) in the previous chapter is unaffected.
Namely, it can be established in exactly the same way as before that if

IS(ICO)I = |S(k,+1)| for some k, 2 2 and if SNR™ (k) > SNRN(ICO—I),
then SNR™ (k_+1) > SNR™ (k) o

As before, the idea is to quantize |S (i) . 7 € P, and [S(i){, © € P, By virtue of the
above propositicn, instead of performing the optimization over the KIXK2 grid of pixels

(K, (f<,) is the total number of pixels in P, (Fy) ), we focus only on a NXN grid (N is

the quantization level). In the following, we outline the steps of the algorithm.
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3.4.2. Algorithm

Below, we roughly list the steps of the efficient sub-optimal algorithm. The details

are left out since they have been already presented in one way or the other.

STEP 1: Find the partitions P, and 7,.
M1 = Max {|S (¢)[, 7 € P}
M2 = Max {[S,(?)|, * € Py}
M = Max[M1, M2]
S(7) — SE)/M, i=1,..,d

STEP 2: Quantize |S (¢)f, 7 € P and |S(¢)], 7 € P,. Assign tags to the

corresponding pixels.

STEP 3: Search through an NX N grid to get optimal levels Ll and L.
STEP 4: Get optimal P, (P,) by direct comparison with L, (L,).
STEP 5: End.

Note that this grid optimization will increase the computation time by a factor of N
over that of the 1-D algorithm presented earlier. Yet, we will see shortly how to adapt the
BPOF problem to the POF algorithm. Hence, this will result in the most efficient
technique for OBPOF design. The only shortcoming of that approach (as we will see) is
that only the optimal (in the sense of maximum SNR) TLA solution will be generated. The
SNR for other TLAs as well as the Horner light efficiency will not be correctly computed.
This 1s what motivated the introduction of the above two algorithms for OBPOF design.

More will be said about this later.
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3.4.3. Numerical Results

We have implemented and tested the above algorithin. Using the same 32 by 32 tank
image and a 64 by 64 (the tank has been centered) FFT, it took 1585 seconds to find the
optimal support functions for the 19 BPOFs (corresponding to the 19 TLAs, from 0 to 90
in increments of 5 degrces) using the old "improved"xiv algorithm. Applying the new
algorithm with /N = 250, it took only 16.8 seconds to obtain 18 supports exactly and one
support within 2 pixels (60 instead of 58 pixels). The time reduction factor is about 95. By
increasing IV to 400, all the supports were computed correctly in 36.4 seconds. This lead to
a reduction factor of 44. It can be seen from here that the computing time of the new
algorithm is a faster increasing function of N than in the OPOF case. This is a direct
consequence of the search over a grid.

As before, we anticipate that the time reduction factor becomes more noticeable as
the number of pixels increases. We increased the FFT size to 128 X 128 and focused on the
optimal support for the Hartley BPOF (TLA = 45 Degrees)”. It took 1939 seconds for
the old algorithm to find the optimal support, whereas the new algorithm with N = 256
took only 1.98 sec to find the exact answer. This is a reduction factor of about 980!

We performed some more testing on other cases (such as non-centered tank, centered
and non-centered pliers) with 64X 64 size FF'Ts. For N = 256, 56 out of the 77 supports
were found exactly with an average reduction factor in CPU time of about 77. [t is
interesting to notice that out of the 21 errors made, 17 were committed on the pliers (13 of
them on the non-centered case) and only 4 on the tank image. More generally, it was
observed that the non-centered cases (i.e., in which the energy in S(f) is almost equally
distributed between the even and odd parts of s(z)) caused the largest number of errors.

Of all these 21 errors, the worst (with the non-centered pliers, § = 90°) caused a loss of

owy using the Heap sort algorithm.

XVNotice that this will lead to conservative results since the sorting time is smallest as the
difference in the number of pixels of Pl and P, becomes smaller.
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0.00046 dB in SNR. Interestingly, this case turned out to be the most "ill" since it
requ.ced /V as high as 660U to get the exact answer (in about 301 sec.) This suggests
another enhancement to the new algorithm where we adapt N to the data (dynamic range,
smallest difference between pixels...etc.). For NV = 400, 64 out of the 77 supports were
exactly found with an average reduction factor of about 35. The worst loss in SNR was
well within that of the case with N = 256. Once again, all the above timing estimates

were done excluding FFTs, inputs/outputs, partitioning and normalization.

3.5. Relating Optimal Designs of BPOFs and POFs

In this section, we establish a link between the optimal design of BPOFs and POFs.
We will show that the OPOF algorithm can be used for BPOF design. This will allow us
to make use of some of the available results related to the POF support optimization.
Thus, the issue of detector noise effect on the support function as well as the window
approximation for the support follow directly from the previous chapter.  More
importantly, this link will provide us with yet another very efficient algorithm for optimal
BPOF design. Actually, this third algorithm is the most efficient of all since it does not
perform the support optimization over a grid. However, as we shall shortly see, the
information it generates (BPOF zlong with its optimized support, SNR and light
efficiency) is relevant only for the optimal TLA. If the variations of SNR and light
efficiency as a function of TLA is desired, one of the other two algorithms neceds to be
used.

Recall that our objective is to find the BPOF H({f) that maximizes the SNR
expression given in Eq. 3-3. We shall assume for now that the support R is fixed. Using
the fact that the modulus of H(f) equals one for all frequencies, maximizing the SNR
becomes equivalent to maximizing the magnitude of the numerator of Eq. (3.3) rewritten

as
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¢ = /S(f) H)df = |o] & . (3.13)
R
Thus, the quantity to be maximized |[c| is given by
= | S(NePH())d
g /}2 S(s) e~ H(p) df
= /R S H(p) df
= [Souna + 5 [Snan
R R
= /p SN HU S (3.14)

where So(f) is given by
g =S

= [S_(f) cos (6) + S/) sin (0)}
+ IS cos(0) = S0 sin (0)] . (3:15)

It can be seen from Eq. (3.14) that the optimal BPOF is given by
Hyf) = 1,()Sen [S(/)]

= I,(/f) Sgn [S.(f) cos(0) + S,(f) sin 0)] . (3.16)

Eq. (3.16) can be recognized to be identical to Eq. (3.1), and hence the argument § can be
looked at as the TLA. The resulting maximum value of [¢| (function of R and 8) is given

by

- /p s (3.17)

However, we have overlooked an important point in the above analysis. We must ensure
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that Ho(f) given in Eq. (3.16) will yield the argument 8 when used in Eq. (3.13). Actually,
this is not true in general and the maximum givew in Eq. (3.17) is only an upper bound for
|c| with all BPOF leading to an argument of 0. This can be easily seen by applying the
fundam.ental integral inequality to [q. (3.14). [t turns out that this upper bound is
achieved by the optimal BPOF H*(f) (it is optimal amongst all those BPOFs with
support equal to R. This R still necds to be determined) at the argument 0* it induces in
Eq. {3.13). In other words, the condition that the filter Ho(f) in Eq. (3.16) induces the

angle 0 when used in Eq. (3.13) is satisfied for § = 6*. This will be the subject of the

following proposition.

Proposition 2: Let H' (f) be the BPOF that leads to the highest SNR

amongst all BPOFs with support R¥VL Let 6* be the argument it induces when
used in Eq. (3.13). Then,

H‘(f) = Hgt(f) ’ (3.18)

where, H, . (/) is given by Eq. (3.16).

Proof: XVii First, il the filter H;,(f) leads to the angle 0*, then Eq.
(3.18) follows immediately from the above analysis. Let us now assume H, . (/f)

induces an angle w 75 0 * . By hypothesis, the maximum possible value of |¢| is
given by

ely, = e /P SUVH" () df

i

[ wnu e < [18 (3.19)
R R

Now using H,. given by Eq. (3.16) in Eq. (3.13), we get

H *
*V'In other words, H (/) leads to the largest magnitude of the integral in Eq. (3.13).

XVilwe acknowledge Fred Dickey et al. of Sandia Laboratories for ;.ointing out an important
detail in this proof.
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le| = e‘f“’/}es(f) sen [ (1)) df

= ) [ sy sgnlS) () of
R

_ Aemi®) /R 250 + 58 ) sen 1S ()4 (3.20)

Taking the magnitude of both terms in Eq. (3.20), we obtain
1/2

o) = [( L1 et + ([ S0 senls? g an?

> /R s > ey, - (3.21)

Absurd .

In the above, the strict incquality follows from the assumption that

w # 0 XVill Thus the assumption that w £ 0* does not hold, and the
result in Eq. (3.18) follows

The next step is to maximize with respect to the support R the SNR resultant from

using H, . (f) and given by

[ /}2 E0y df]

SNR = . (3.22)
/P P.(f)df

2

Eq. (3.22) is very similar to Eq. (2.11) found in the previous chapter. The only difference is
®
that we are now using ISf (/)] instead of |S(f)]. This suggests the following very efficient

algorithm for OBPOF design based on the techniques used for the OPOF case.

XVlilfhdeed, the equality happens if and only if the second term in the first line of Eq. (3.21) is
zero. This in turns happens if and only if the argument of the integral in Eq. (3.13) (=w) equals
f*.
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STEP 0: 0 = - A0, SNR = 0.
— - mazx
STEP 1- 6 =0 + A0
STEP 2: Obtain IS';(f)( = | Re [S(/) e_jo“.
STEP 3: Apply the OPOF algorithm using {Sf(f)l instead of |S(f)]. Get
corresponding support }20. Compute corresponding SNR. If greater than
SNR then,
mazx
SNRmaI———SNR; 0* =0, R = Ro.
STEP 4: Ifo < 6 gotoSTEP L.
_—— — “mazx
STEP s: End.

The idea in the above algorithm is to scan all possible values of the TLA 6. Each time,
|S(f)| is replaced by |Sf(f)| and the OPOF algorithm is applied to optimize the support of
Ha(f) Note, however, that the computed SNR, support function, and light efficiency will
not be correct in general (unless 0 =0*). Eventually, 8 =0* and we solve for the
optimal support, SNR, and light efficiency of /. (f) (the OBPOF).

We tested this third algorithm on the same images (tank and pliers) we used
previously. The optimal BPOFs solved for agree with those found using the other two
algorithms. Hence, the optimal TLA is O degree for both images when they were centered
in the FFT array, and 90 degrees for both when they were placed at the upper left corner.
[t took around 200 seconds for the third algorithm (using the OPOF algorithm described in
the previous chapter) to generate the OBPOF versus the 1585 seconds required by the first
algorithm. This is a factor of about 8 reduction in CPU time. However, as already
mentioned, we disregarded any information related to all other TLAs but the optimal one.

Note that in this case we do not need to make the assumption that R is even symmetric.
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3.6. Bifurcation Issuc

The bifurcation |)hvnonwnnn“5‘ 20.23 5 one of the most distinctive characteristics of
BPOJF -design. The most tmportant factor affecting this phenomenon is the symmetry of
S(f) at the time the BPOFs are synthesized. This symmetry strongly depends on the
position of the reference umage in the FFT array. To illustrate this we computed the
BPOF and OBPOF using the real part of S(f) in two cases. In the first, the tank image
was placed at the upper left corner of the FFT array and in the second it has been

centered. For better display, we decided to use 128 by 128 I'I"Ts. Fig. 3-11 plots the

correlation of the tank image with the BPOF synthesized from the non-centered tank. The

peak=108.1

(at origin)

Figure 3-11: Correlation of tank with BPOF(re)
in the non-centered case.

existence of a second but smaller peak is noticeable. Actually, the peak corresponds to the
autocorrelation of the tank. The second peak is the autoconvolution. Fig. 3-12 is the
counterpart of Fig. 3-11 using the OBPOF instead. It can be observed that the second
peak became more noticeable (actually it became as large as the peak itself). Also, due to
the low pass nature of the support, both peaks have been smoothed. We repeated both

correlations with the tank centered at the time the filters are generated. Figs. 3-13 and
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peak ==20

{at origin)

Figure 3-12: Correlation of tank with OBPOF(re)

in the non-centered case.

i peak==114.2

N (at origin)

y
v

g

Figure 3-13: Correlation of tank with BPOF(re)
in the centered case.

3-14 show the correlations with the BPOF and OBPOF, respectively. It can be seen that
in this case the second peak has disappeared froni both outputs.

A possible explanation of the bifurcation phenomenon is that due to the fact we are
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peak=227

(at origin)

Figure 3-14: Correlation of tank with OBPOF(re)
in the centered case.

using the real part of S(f), we are in effect correlating the tank image with its even (il we
accept the fact that the binarization operation preserves some of the original
information”) part. This amounts to correlating the image with itself (ie,
autocorrelation) and with its flipped version (i.e., autoconvolution). When the image is
placed at the upper corner of the FFT array, its flipped version is positioned at the other
corner across {rom the center. The fact that there is no overlap between both causes the
two peaks to be distinct from one another. On the other hand, in the centered case, both
the tank and its flipped version are almost totally overlapping. This causes both peaks
alsc to overlap, appearing as a single peak.

The above argument suggests that by using other binarization schemes instead of the
real part, one could perhaps get around this bifurcation problem. In fact, we tested the
above simulations using the Hartley BPOF instead. We had little success. Actually, it can
be easily argued that using a general binarization provides no guarantee for solving this
problem. In all cases we are adding the correlation output to the convolution. The only

change the TLA introduces is a scaling factor that is affecting both outputs.
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3.7. Distortion Sensitivity of BPOFs and OBPOF's

In this section we present the results of our computer simulations to test the
distortion sensitivity of BPOF and OBPOI. As in the POF case, we found that the
OBPOF has more tolerance to distortions (rotations) than the BPOF. Fig. 3-15 plots the
SNR variations as a function of rotations for both filters using the tank image (ceniered
prior to solving for the filters). The binarization with respect to the real part has been

used. In Fig. 3-16 we incorporated the results of the MSF, POF, and OPOF obtained from
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Figure 3-15: Output SNR (vs) rotation for BPOF(re) and OBPOF(re)
using centered tank image.

the previous chapter as a reference. It can be observed that the MSF, OPOF, and OBPOF
seem to be the least sensitive to input distortions. At the bottom of the scale are the POF
and BPOF which exhibit a much more sensitive behaviour. Actually, the POF, even
though quite sensitive, seems to keep an SNR margin over the BPOF. This appears to be a
direct result of binarization. Finally, the hierarchy introduced earlier (i.e., MSF followed

by OPOF, OBPOF, POF, and lastly BPOF) can be seen with no input rotation. Similar
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Figure 3-16: Output SNR (vs) rotation for MSF, POF, OPOF,
BPOF(re), and OBPOF(re) using centered tank image.

results were also obtained for the pliers image. They further support the sensitivity of

BPOF with respect to OBPOF. The details will be omitted for the sake of conciseness.

3.8. Summary

[n this chapter we have essentially extended our previous results to binary phase-only
filters. We presented two efficient algorithms for the design of BPOFs. These are
generalizations of the earlier algorithms. We also presented simulation results that closely
agree with the numerically computed results. We have shown, using tank and pliers image
examples, that careful selection of the support can improve the SNR by about 5 dB
compared to the unoptimized BPOFs. In contrast, selecting the proper TLA scems to
affect the light efficiency noticeably while providing an SNR increase of only 1 dB.

We established a link between the design of optimal BPOFs and POFs. This turned

out to be quite useful. First, it provided us with another very efficient algorithm. This lead

91




to a reduction in CPU time by a factor of about 8. Thiz is because the POF algorithm,
unlike the BPOF, does not perform its optimization on a grid. However, this algorithm is
capable of generating only information pertinent to the optimai BPO{. It does not allow
the variations of SNR and light efficiency with respect to the TLA to be monitored. This
could be important in situations where trade offs between SNR and light efficiency need to
be made. In this case, the other two algorithms should be used. Furthermore, this bridge
between BPOF and POF design also allowed us to take advantage of available results
related to support selection. Hence, the eflect of the detector noise on the BPOF support
design is the same as that for the POF. Likewise, the window approximation of the
support of POF can be extended to the BPOF case. Typically about 1.5 dB loss in SNR is
expected by this approximation.

The bifurcation issue was also addressed. This phenomenon strongly depends on the
position of the input image in the FFT array at the time the filters are synthesized. This
was illustrated by showing some computer generated output correlations. The TLA does
not seem to have a noticeable effect on the bifurcation phenomenon. Finally, we provided
some simple computer simulations that test the distortion sensitivity of BPOFs and
OBPOFs. As in the POF case, the BPOF was found to be much more sensitive to input
rotation than the OBPOF. This appears to be a direct consequence of the implicit high
frequency amplification in BPOFs.

In conclusion, it seems that when sufficient light is available, the support function of
any BPOF should be optimized using the algorithms we provided. Moreover, our results
also indicate that the choice of § = 0° for TLA may be a very good choice for most
images since most realistic images have more energy in their even parts compared to the

odd parts.
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Chapter 4

Conclusion

Our research results presented here have significant implications regarding the use of
POFs and BPOFs. Most previous research has been somewhat empirical and our efforts
have produced some general observations.

Where POFs are to be employed, we strongly recommend using an appropriate
masking or support function. While the exact improvements are image-dependent, we scem
to obtain about 5 dB SNR improvement by using OBPOFs. Since POFs are expected to
function in noisy environments, we must use OPOFs to combat the noise effect. A side
benefit of using OPOFs is the reduced seasitivity to input distortions. A disadvantage of
using OPOF's is the reduced light efficiency because of the size of the support function.
The OPOFs can be implemented in practice in many different ways. One such method is
to use a sandwich of a phase-only device and an on-off device in the frequency plane.

More important (from the practical viewpoint) are the OBPOFs. Strictly speaking,
OBPOFs are three-valued (+1, 0, and -1). These can be implemented using SLMs capable
of 3 levels. Recently, Kast et. al.32 demonstrated that MOSLMs can be used as a 3-level
device. We have shown that substantial improvements in output SNR can be obtained by
using OBPOF instead of the conventional BPOF. As in the case of OPOFs, light efficiency
is reduced and distortion sensitivity is improved.

The results of this research effort are very encouraging as far as the roles of OPOFs
and OBPOFs in practical systems are concerned. We believe that use of optimal filters in

improved SLMs will bring the optical correlator into a practical reality.
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